MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ee Structured version   Visualization version   GIF version

Definition df-ee 28906
Description: Define the Euclidean space generator. For details, see elee 28909. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
df-ee 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))

Detailed syntax breakdown of Definition df-ee
StepHypRef Expression
1 cee 28903 . 2 class 𝔼
2 vn . . 3 setvar 𝑛
3 cn 12266 . . 3 class
4 cr 11154 . . . 4 class
5 c1 11156 . . . . 5 class 1
62cv 1539 . . . . 5 class 𝑛
7 cfz 13547 . . . . 5 class ...
85, 6, 7co 7431 . . . 4 class (1...𝑛)
9 cmap 8866 . . . 4 class m
104, 8, 9co 7431 . . 3 class (ℝ ↑m (1...𝑛))
112, 3, 10cmpt 5225 . 2 class (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
121, 11wceq 1540 1 wff 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
Colors of variables: wff setvar class
This definition is referenced by:  elee  28909  eleenn  28911  eenglngeehlnm  48660
  Copyright terms: Public domain W3C validator