Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ee | Structured version Visualization version GIF version |
Description: Define the Euclidean space generator. For details, see elee 27165. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
df-ee | ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cee 27159 | . 2 class 𝔼 | |
2 | vn | . . 3 setvar 𝑛 | |
3 | cn 11903 | . . 3 class ℕ | |
4 | cr 10801 | . . . 4 class ℝ | |
5 | c1 10803 | . . . . 5 class 1 | |
6 | 2 | cv 1538 | . . . . 5 class 𝑛 |
7 | cfz 13168 | . . . . 5 class ... | |
8 | 5, 6, 7 | co 7255 | . . . 4 class (1...𝑛) |
9 | cmap 8573 | . . . 4 class ↑m | |
10 | 4, 8, 9 | co 7255 | . . 3 class (ℝ ↑m (1...𝑛)) |
11 | 2, 3, 10 | cmpt 5153 | . 2 class (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) |
12 | 1, 11 | wceq 1539 | 1 wff 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) |
Colors of variables: wff setvar class |
This definition is referenced by: elee 27165 eleenn 27167 eenglngeehlnm 45973 |
Copyright terms: Public domain | W3C validator |