Home | Metamath
Proof Explorer Theorem List (p. 285 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28853) |
Hilbert Space Explorer
(28854-30376) |
Users' Mathboxes
(30377-45962) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 2bornot2b 28401 | The law of excluded middle. Act III, Theorem 1 of Shakespeare, Hamlet, Prince of Denmark (1602). Its author leaves its proof as an exercise for the reader - "To be, or not to be: that is the question" - starting a trend that has become standard in modern-day textbooks, serving to make the frustrated reader feel inferior, or in some cases to mask the fact that the author does not know its solution. (Contributed by Prof. Loof Lirpa, 1-Apr-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (2 · 𝐵 ∨ ¬ 2 · 𝐵) | ||
Theorem | helloworld 28402 | The classic "Hello world" benchmark has been translated into 314 computer programming languages - see http://helloworldcollection.de. However, for many years it eluded a proof that it is more than just a conjecture, even though a wily mathematician once claimed, "I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." Using an IBM 709 mainframe, a team of mathematicians led by Prof. Loof Lirpa, at the New College of Tahiti, were finally able to put it to rest with a remarkably short proof only four lines long. (Contributed by Prof. Loof Lirpa, 1-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ (ℎ ∈ (𝐿𝐿0) ∧ 𝑊∅(R1𝑑)) | ||
Theorem | 1p1e2apr1 28403 | One plus one equals two. Using proof-shortening techniques pioneered by Mr. Mel L. O'Cat, along with the latest supercomputer technology, Prof. Loof Lirpa and colleagues were able to shorten Whitehead and Russell's 360-page proof that 1+1=2 in Principia Mathematica to this remarkable proof only two steps long, thus establishing a new world's record for this famous theorem. (Contributed by Prof. Loof Lirpa, 1-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (1 + 1) = 2 | ||
Theorem | eqid1 28404 |
Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Book VII, Part 17). It is one of the three axioms of Ayn Rand's philosophy (Atlas Shrugged, Part Three, Chapter VII). While some have proposed extending Rand's axiomatization to include Compassion and Kindness, others fear that such an extension may flirt with logical inconsistency. (Contributed by Stefan Allan, 1-Apr-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐴 | ||
Theorem | 1div0apr 28405 | Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (1 / 0) = ∅ | ||
Theorem | topnfbey 28406 | Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ (0...+∞) → +∞ < 𝐵) | ||
Theorem | 9p10ne21 28407 | 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.) |
⊢ (9 + ;10) ≠ ;21 | ||
Theorem | 9p10ne21fool 28408 | 9 + 10 equals 21. This astonishing thesis lives as a meme on the internet, and may be believed by quite some people. At least repeated requests to falsify it are a permanent part of the story. Prof. Loof Lirpa did not rest until he finally came up with a computer verifiable mathematical proof, that only a fool can think so. (Contributed by Prof. Loof Lirpa, 26-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((9 + ;10) = ;21 → 𝐹∅(0 · 1)) | ||
Syntax | cplig 28409 | Extend class notation with the class of all planar incidence geometries. |
class Plig | ||
Definition | df-plig 28410* |
Define the class of planar incidence geometries. We use Hilbert's
axioms and adapt them to planar geometry. We use ∈ for the
incidence relation. We could have used a generic binary relation, but
using ∈ allows us to reuse previous
results. Much of what follows
is directly borrowed from Aitken, Incidence-Betweenness Geometry,
2008, http://public.csusm.edu/aitken_html/m410/betweenness.08.pdf.
The class Plig is the class of planar incidence geometries, where a planar incidence geometry is defined as a set of lines satisfying three axioms. In the definition below, 𝑥 denotes a planar incidence geometry, so ∪ 𝑥 denotes the union of its lines, that is, the set of points in the plane, 𝑙 denotes a line, and 𝑎, 𝑏, 𝑐 denote points. Therefore, the axioms are: 1) for all pairs of (distinct) points, there exists a unique line containing them; 2) all lines contain at least two points; 3) there exist three non-collinear points. (Contributed by FL, 2-Aug-2009.) |
⊢ Plig = {𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} | ||
Theorem | isplig 28411* | The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) | ||
Theorem | ispligb 28412* | The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝐺 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝐺 ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)))) | ||
Theorem | tncp 28413* | In any planar incidence geometry, there exist three non-collinear points. (Contributed by FL, 3-Aug-2009.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ (𝐺 ∈ Plig → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 ∃𝑐 ∈ 𝑃 ∀𝑙 ∈ 𝐺 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙)) | ||
Theorem | l2p 28414* | For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 ∃𝑏 ∈ 𝑃 (𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝐿 ∧ 𝑏 ∈ 𝐿)) | ||
Theorem | lpni 28415* | For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ 𝐿 ∈ 𝐺) → ∃𝑎 ∈ 𝑃 𝑎 ∉ 𝐿) | ||
Theorem | nsnlplig 28416 | There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.) |
⊢ (𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺) | ||
Theorem | nsnlpligALT 28417 | Alternate version of nsnlplig 28416 using the predicate ∉ instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) | ||
Theorem | n0lplig 28418 | There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.) |
⊢ (𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺) | ||
Theorem | n0lpligALT 28419 | Alternate version of n0lplig 28418 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 28416. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) | ||
Theorem | eulplig 28420* | Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.) |
⊢ 𝑃 = ∪ 𝐺 ⇒ ⊢ ((𝐺 ∈ Plig ∧ ((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ 𝐴 ≠ 𝐵)) → ∃!𝑙 ∈ 𝐺 (𝐴 ∈ 𝑙 ∧ 𝐵 ∈ 𝑙)) | ||
Theorem | pliguhgr 28421 | Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 27024 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.) |
⊢ (𝐺 ∈ Plig → 〈∪ 𝐺, ( I ↾ 𝐺)〉 ∈ UHGraph) | ||
This section contains a few aliases that we temporarily keep to prevent broken links. If you land on any of these, please let the originating site and/or us know that the link that made you land here should be changed. | ||
Theorem | dummylink 28422 |
Alias for a1ii 2 that may be referenced in some older works, and
kept
here to prevent broken links.
If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to a1ii 2. (Contributed by NM, 7-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜑 | ||
Theorem | id1 28423 |
Alias for idALT 23 that may be referenced in some older works, and
kept
here to prevent broken links.
If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to idALT 23. (Contributed by NM, 30-Sep-1992.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜑) | ||
The intent is for this deprecated section to be deleted once its theorems have extensible structure versions (or are not useful). You can make a list of "terminal" theorems (i.e., theorems not referenced by anything else) and for each theorem see if there exists an extensible structure version (or decide it is not useful), and if so, delete it. Then, repeat this recursively. One way to search for terminal theorems is to log the output ("MM> OPEN LOG xxx.txt") of "MM> SHOW USAGE <label-match>" in the Metamath program and search for "(None)". | ||
This section contains an earlier development of groups that was defined before extensible structures were introduced. The intent is for this deprecated section to be deleted once the corresponding definitions and theorems for complex topological vector spaces, which are using them, are revised accordingly. | ||
Syntax | cgr 28424 | Extend class notation with the class of all group operations. |
class GrpOp | ||
Syntax | cgi 28425 | Extend class notation with a function mapping a group operation to the group's identity element. |
class GId | ||
Syntax | cgn 28426 | Extend class notation with a function mapping a group operation to the inverse function for the group. |
class inv | ||
Syntax | cgs 28427 | Extend class notation with a function mapping a group operation to the division (or subtraction) operation for the group. |
class /𝑔 | ||
Definition | df-grpo 28428* | Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of [Herstein] p. 54. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} | ||
Definition | df-gid 28429* | Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | ||
Definition | df-ginv 28430* | Define a function that maps a group operation to the group's inverse function. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.) |
⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) | ||
Definition | df-gdiv 28431* | Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | ||
Theorem | isgrpo 28432* | The predicate "is a group operation." Note that 𝑋 is the base set of the group. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) | ||
Theorem | isgrpoi 28433* | Properties that determine a group operation. Read 𝑁 as 𝑁(𝑥). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 ∈ V & ⊢ 𝐺:(𝑋 × 𝑋)⟶𝑋 & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) & ⊢ 𝑈 ∈ 𝑋 & ⊢ (𝑥 ∈ 𝑋 → (𝑈𝐺𝑥) = 𝑥) & ⊢ (𝑥 ∈ 𝑋 → 𝑁 ∈ 𝑋) & ⊢ (𝑥 ∈ 𝑋 → (𝑁𝐺𝑥) = 𝑈) ⇒ ⊢ 𝐺 ∈ GrpOp | ||
Theorem | grpofo 28434 | A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | grpocl 28435 | Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | grpolidinv 28436* | A group has a left identity element, and every member has a left inverse. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)) | ||
Theorem | grpon0 28437 | The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑋 ≠ ∅) | ||
Theorem | grpoass 28438 | A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | grpoidinvlem1 28439 | Lemma for grpoidinv 28443. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈) | ||
Theorem | grpoidinvlem2 28440 | Lemma for grpoidinv 28443. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌)) | ||
Theorem | grpoidinvlem3 28441* | Lemma for grpoidinv 28443. (Contributed by NM, 11-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) & ⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈) ⇒ ⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) | ||
Theorem | grpoidinvlem4 28442* | Lemma for grpoidinv 28443. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) | ||
Theorem | grpoidinv 28443* | A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) | ||
Theorem | grpoideu 28444* | The left identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ GrpOp → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) | ||
Theorem | grporndm 28445 | A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) | ||
Theorem | 0ngrp 28446 | The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ GrpOp | ||
Theorem | gidval 28447* | The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
Theorem | grpoidval 28448* | Lemma for grpoidcl 28449 and others. (Contributed by NM, 5-Feb-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) | ||
Theorem | grpoidcl 28449 | The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ 𝑋) | ||
Theorem | grpoidinv2 28450* | A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) | ||
Theorem | grpolid 28451 | The identity element of a group is a left identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑈𝐺𝐴) = 𝐴) | ||
Theorem | grporid 28452 | The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑈) = 𝐴) | ||
Theorem | grporcan 28453 | Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | grpoinveu 28454* | The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | ||
Theorem | grpoid 28455 | Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴)) | ||
Theorem | grporn 28456 | The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) ⇒ ⊢ 𝑋 = ran 𝐺 | ||
Theorem | grpoinvfval 28457* | The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) | ||
Theorem | grpoinvval 28458* | The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) | ||
Theorem | grpoinvcl 28459 | A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) | ||
Theorem | grpoinv 28460 | The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) | ||
Theorem | grpolinv 28461 | The left inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑈) | ||
Theorem | grporinv 28462 | The right inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑈) | ||
Theorem | grpoinvid1 28463 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐴𝐺𝐵) = 𝑈)) | ||
Theorem | grpoinvid2 28464 | The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) = 𝐵 ↔ (𝐵𝐺𝐴) = 𝑈)) | ||
Theorem | grpolcan 28465 | Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | grpo2inv 28466 | Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝑁‘𝐴)) = 𝐴) | ||
Theorem | grpoinvf 28467 | Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝑁:𝑋–1-1-onto→𝑋) | ||
Theorem | grpoinvop 28468 | The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴))) | ||
Theorem | grpodivfval 28469* | Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) | ||
Theorem | grpodivval 28470 | Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) | ||
Theorem | grpodivinv 28471 | Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) | ||
Theorem | grpoinvdiv 28472 | Inverse of a group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐷𝐵)) = (𝐵𝐷𝐴)) | ||
Theorem | grpodivf 28473 | Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | grpodivcl 28474 | Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) | ||
Theorem | grpodivdiv 28475 | Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) | ||
Theorem | grpomuldivass 28476 | Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = (𝐴𝐺(𝐵𝐷𝐶))) | ||
Theorem | grpodivid 28477 | Division of a group member by itself. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) | ||
Theorem | grponpcan 28478 | Cancellation law for group division. (npcan 10973 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) | ||
Syntax | cablo 28479 | Extend class notation with the class of all Abelian group operations. |
class AbelOp | ||
Definition | df-ablo 28480* | Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} | ||
Theorem | isablo 28481* | The predicate "is an Abelian (commutative) group operation." (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ AbelOp ↔ (𝐺 ∈ GrpOp ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺𝑦) = (𝑦𝐺𝑥))) | ||
Theorem | ablogrpo 28482 | An Abelian group operation is a group operation. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | ||
Theorem | ablocom 28483 | An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | ablo32 28484 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
Theorem | ablo4 28485 | Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
Theorem | isabloi 28486* | Properties that determine an Abelian group operation. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 ∈ GrpOp & ⊢ dom 𝐺 = (𝑋 × 𝑋) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ 𝐺 ∈ AbelOp | ||
Theorem | ablomuldiv 28487 | Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) | ||
Theorem | ablodivdiv 28488 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = ((𝐴𝐷𝐵)𝐺𝐶)) | ||
Theorem | ablodivdiv4 28489 | Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶))) | ||
Theorem | ablodiv32 28490 | Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵)) | ||
Theorem | ablonncan 28491 | Cancellation law for group division. (nncan 10993 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) | ||
Theorem | ablonnncan1 28492 | Cancellation law for group division. (nnncan1 11000 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐷(𝐴𝐷𝐶)) = (𝐶𝐷𝐵)) | ||
Syntax | cvc 28493 | Extend class notation with the class of all complex vector spaces. |
class CVecOLD | ||
Definition | df-vc 28494* | Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ CVecOLD = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} | ||
Theorem | vcrel 28495 | The class of all complex vector spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
⊢ Rel CVecOLD | ||
Theorem | vciOLD 28496* | Obsolete version of cvsi 23882. The properties of a complex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. The variable 𝑊 was chosen because V is already used for the universal class. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) | ||
Theorem | vcsm 28497 | Functionality of th scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑊 ∈ CVecOLD → 𝑆:(ℂ × 𝑋)⟶𝑋) | ||
Theorem | vccl 28498 | Closure of the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴𝑆𝐵) ∈ 𝑋) | ||
Theorem | vcidOLD 28499 | Identity element for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) Obsolete theorem, use clmvs1 23845 together with cvsclm 23878 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) | ||
Theorem | vcdi 28500 | Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑊) & ⊢ 𝑆 = (2nd ‘𝑊) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑊 ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑆(𝐵𝐺𝐶)) = ((𝐴𝑆𝐵)𝐺(𝐴𝑆𝐶))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |