MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleenn Structured version   Visualization version   GIF version

Theorem eleenn 28823
Description: If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleenn (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem eleenn
StepHypRef Expression
1 df-ee 28818 . 2 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
21mptrcl 6977 1 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  1c1 11069  cn 12186  ...cfz 13468  𝔼cee 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-ee 28818
This theorem is referenced by:  eleei  28824  eedimeq  28825  brbtwn  28826  brcgr  28827  eleesub  28838  eleesubd  28839  axsegconlem1  28844  axsegconlem8  28851  axeuclidlem  28889  brsegle  36096
  Copyright terms: Public domain W3C validator