MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleenn Structured version   Visualization version   GIF version

Theorem eleenn 26195
Description: If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.)
Assertion
Ref Expression
eleenn (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)

Proof of Theorem eleenn
StepHypRef Expression
1 n0i 4149 . 2 (𝐴 ∈ (𝔼‘𝑁) → ¬ (𝔼‘𝑁) = ∅)
2 ovex 6937 . . . . 5 (ℝ ↑𝑚 (1...𝑛)) ∈ V
3 df-ee 26190 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑𝑚 (1...𝑛)))
42, 3dmmpti 6256 . . . 4 dom 𝔼 = ℕ
54eleq2i 2898 . . 3 (𝑁 ∈ dom 𝔼 ↔ 𝑁 ∈ ℕ)
6 ndmfv 6463 . . 3 𝑁 ∈ dom 𝔼 → (𝔼‘𝑁) = ∅)
75, 6sylnbir 323 . 2 𝑁 ∈ ℕ → (𝔼‘𝑁) = ∅)
81, 7nsyl2 145 1 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  c0 4144  dom cdm 5342  cfv 6123  (class class class)co 6905  𝑚 cmap 8122  cr 10251  1c1 10253  cn 11350  ...cfz 12619  𝔼cee 26187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fn 6126  df-fv 6131  df-ov 6908  df-ee 26190
This theorem is referenced by:  eleei  26196  eedimeq  26197  brbtwn  26198  brcgr  26199  eleesub  26210  eleesubd  26211  axsegconlem1  26216  axsegconlem8  26223  axeuclidlem  26261  brsegle  32754
  Copyright terms: Public domain W3C validator