Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleenn | Structured version Visualization version GIF version |
Description: If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.) |
Ref | Expression |
---|---|
eleenn | ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ee 27162 | . 2 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | |
2 | 1 | mptrcl 6866 | 1 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 1c1 10803 ℕcn 11903 ...cfz 13168 𝔼cee 27159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 df-ee 27162 |
This theorem is referenced by: eleei 27168 eedimeq 27169 brbtwn 27170 brcgr 27171 eleesub 27182 eleesubd 27183 axsegconlem1 27188 axsegconlem8 27195 axeuclidlem 27233 brsegle 34337 |
Copyright terms: Public domain | W3C validator |