| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleenn | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is in (𝔼‘𝑁), then 𝑁 is a natural. (Contributed by Scott Fenton, 1-Jul-2013.) |
| Ref | Expression |
|---|---|
| eleenn | ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ee 28867 | . 2 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛))) | |
| 2 | 1 | mptrcl 6938 | 1 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11002 1c1 11004 ℕcn 12122 ...cfz 13404 𝔼cee 28864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ee 28867 |
| This theorem is referenced by: eleei 28873 eedimeq 28874 brbtwn 28875 brcgr 28876 eleesub 28887 eleesubd 28888 axsegconlem1 28893 axsegconlem8 28900 axeuclidlem 28938 brsegle 36141 |
| Copyright terms: Public domain | W3C validator |