Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnm Structured version   Visualization version   GIF version

Theorem eenglngeehlnm 43303
Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg 26290) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 43297). (Contributed by AV, 16-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnm (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))

Proof of Theorem eenglngeehlnm
Dummy variables 𝑖 𝑝 𝑡 𝑥 𝑦 𝑛 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengbas 26287 . . . . 5 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
21eqcomd 2831 . . . 4 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (𝔼‘𝑁))
3 oveq2 6918 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43oveq2d 6926 . . . . 5 (𝑛 = 𝑁 → (ℝ ↑𝑚 (1...𝑛)) = (ℝ ↑𝑚 (1...𝑁)))
5 df-ee 26197 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑𝑚 (1...𝑛)))
6 ovex 6942 . . . . 5 (ℝ ↑𝑚 (1...𝑁)) ∈ V
74, 5, 6fvmpt 6533 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑𝑚 (1...𝑁)))
82, 7eqtrd 2861 . . 3 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (ℝ ↑𝑚 (1...𝑁)))
92ancli 544 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)))
109, 8jca 507 . . . 4 (𝑁 ∈ ℕ → ((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑𝑚 (1...𝑁))))
11 difeq1 3950 . . . . 5 ((Base‘(EEG‘𝑁)) = (ℝ ↑𝑚 (1...𝑁)) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}))
1211ad2antlr 718 . . . 4 ((((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑𝑚 (1...𝑁))) ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}))
1310, 12sylan 575 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}))
148adantr 474 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (Base‘(EEG‘𝑁)) = (ℝ ↑𝑚 (1...𝑁)))
15 simpll 783 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑁 ∈ ℕ)
168eleq2d 2892 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁))))
1716biimpcd 241 . . . . . . . 8 (𝑥 ∈ (Base‘(EEG‘𝑁)) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁))))
1817adantr 474 . . . . . . 7 ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁))))
1918impcom 398 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)))
2019adantr 474 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)))
218difeq1d 3956 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}))
2221eleq2d 2892 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↔ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})))
2322biimpd 221 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) → 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})))
2423adantld 486 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})))
2524imp 397 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}))
2625adantr 474 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}))
2714eleq2d 2892 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (𝑝 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))))
2827biimpa 470 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁)))
29 eenglngeehlnmlem1 43301 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
30 eenglngeehlnmlem2 43302 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))))
3129, 30impbid 204 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚 (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3215, 20, 26, 28, 31syl31anc 1496 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3314, 32rabeqbidva 3409 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))} = {𝑝 ∈ (ℝ ↑𝑚 (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
348, 13, 33mpt2eq123dva 6981 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}) = (𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)), 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑𝑚 (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
35 eqid 2825 . . 3 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
36 eqid 2825 . . 3 (1...𝑁) = (1...𝑁)
3735, 36elntg2 26291 . 2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}))
38 nnnn0 11633 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
39 eqid 2825 . . . . . 6 (𝔼hil𝑁) = (𝔼hil𝑁)
4039ehlval 23589 . . . . 5 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4138, 40syl 17 . . . 4 (𝑁 ∈ ℕ → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4241fveq2d 6441 . . 3 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (LineM‘(ℝ^‘(1...𝑁))))
43 fzfid 13074 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
44 eqid 2825 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘(1...𝑁))
45 eqid 2825 . . . . 5 (ℝ ↑𝑚 (1...𝑁)) = (ℝ ↑𝑚 (1...𝑁))
46 eqid 2825 . . . . 5 (LineM‘(ℝ^‘(1...𝑁))) = (LineM‘(ℝ^‘(1...𝑁)))
4744, 45, 46rrxlinesc 43299 . . . 4 ((1...𝑁) ∈ Fin → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)), 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑𝑚 (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4843, 47syl 17 . . 3 (𝑁 ∈ ℕ → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)), 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑𝑚 (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4942, 48eqtrd 2861 . 2 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (𝑥 ∈ (ℝ ↑𝑚 (1...𝑁)), 𝑦 ∈ ((ℝ ↑𝑚 (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑𝑚 (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
5034, 37, 493eqtr4d 2871 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3o 1110  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wrex 3118  {crab 3121  cdif 3795  {csn 4399  cfv 6127  (class class class)co 6910  cmpt2 6912  𝑚 cmap 8127  Fincfn 8228  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  cmin 10592  cn 11357  0cn0 11625  (,]cioc 12471  [,)cico 12472  [,]cicc 12473  ...cfz 12626  Basecbs 16229  ℝ^crrx 23558  𝔼hilcehl 23559  LineGclng 25756  𝔼cee 26194  EEGceeng 26283  LineMcline 43291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-sum 14801  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-0g 16462  df-prds 16468  df-pws 16470  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-ghm 18016  df-cmn 18555  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-rnghom 19078  df-drng 19112  df-field 19113  df-subrg 19141  df-staf 19208  df-srng 19209  df-lmod 19228  df-lss 19296  df-sra 19540  df-rgmod 19541  df-cnfld 20114  df-refld 20319  df-dsmm 20446  df-frlm 20461  df-tng 22766  df-tcph 23345  df-rrx 23560  df-ehl 23561  df-itv 25757  df-lng 25758  df-ee 26197  df-btwn 26198  df-eeng 26284  df-line 43293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator