Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnm Structured version   Visualization version   GIF version

Theorem eenglngeehlnm 48589
Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg 29014) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 48583). (Contributed by AV, 16-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnm (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))

Proof of Theorem eenglngeehlnm
Dummy variables 𝑖 𝑝 𝑡 𝑥 𝑦 𝑛 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengbas 29011 . . . . 5 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
21eqcomd 2741 . . . 4 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (𝔼‘𝑁))
3 oveq2 7439 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43oveq2d 7447 . . . . 5 (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
5 df-ee 28921 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
6 ovex 7464 . . . . 5 (ℝ ↑m (1...𝑁)) ∈ V
74, 5, 6fvmpt 7016 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁)))
82, 7eqtrd 2775 . . 3 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
92ancli 548 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)))
109, 8jca 511 . . . 4 (𝑁 ∈ ℕ → ((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))))
11 difeq1 4129 . . . . 5 ((Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1211ad2antlr 727 . . . 4 ((((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))) ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1310, 12sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
148adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
15 simpll 767 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑁 ∈ ℕ)
168eleq2d 2825 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1716biimpcd 249 . . . . . . . 8 (𝑥 ∈ (Base‘(EEG‘𝑁)) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1817adantr 480 . . . . . . 7 ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1918impcom 407 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
2019adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
218difeq1d 4135 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2221eleq2d 2825 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↔ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2322biimpd 229 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2423adantld 490 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2524imp 406 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2625adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2714eleq2d 2825 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (𝑝 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑝 ∈ (ℝ ↑m (1...𝑁))))
2827biimpa 476 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑝 ∈ (ℝ ↑m (1...𝑁)))
29 eenglngeehlnmlem1 48587 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
30 eenglngeehlnmlem2 48588 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))))
3129, 30impbid 212 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3215, 20, 26, 28, 31syl31anc 1372 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3314, 32rabeqbidva 3450 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))} = {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
348, 13, 33mpoeq123dva 7507 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
35 eqid 2735 . . 3 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
36 eqid 2735 . . 3 (1...𝑁) = (1...𝑁)
3735, 36elntg2 29015 . 2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}))
38 nnnn0 12531 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
39 eqid 2735 . . . . . 6 (𝔼hil𝑁) = (𝔼hil𝑁)
4039ehlval 25462 . . . . 5 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4138, 40syl 17 . . . 4 (𝑁 ∈ ℕ → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4241fveq2d 6911 . . 3 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (LineM‘(ℝ^‘(1...𝑁))))
43 fzfid 14011 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
44 eqid 2735 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘(1...𝑁))
45 eqid 2735 . . . . 5 (ℝ ↑m (1...𝑁)) = (ℝ ↑m (1...𝑁))
46 eqid 2735 . . . . 5 (LineM‘(ℝ^‘(1...𝑁))) = (LineM‘(ℝ^‘(1...𝑁)))
4744, 45, 46rrxlinesc 48585 . . . 4 ((1...𝑁) ∈ Fin → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4843, 47syl 17 . . 3 (𝑁 ∈ ℕ → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4942, 48eqtrd 2775 . 2 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
5034, 37, 493eqtr4d 2785 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  0cn0 12524  (,]cioc 13385  [,)cico 13386  [,]cicc 13387  ...cfz 13544  Basecbs 17245  ℝ^crrx 25431  𝔼hilcehl 25432  LineGclng 28457  𝔼cee 28918  EEGceeng 29007  LineMcline 48577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-tng 24613  df-tcph 25217  df-rrx 25433  df-ehl 25434  df-itv 28458  df-lng 28459  df-ee 28921  df-btwn 28922  df-eeng 29008  df-line 48579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator