Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnm Structured version   Visualization version   GIF version

Theorem eenglngeehlnm 48839
Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg 28962) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 48833). (Contributed by AV, 16-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnm (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))

Proof of Theorem eenglngeehlnm
Dummy variables 𝑖 𝑝 𝑡 𝑥 𝑦 𝑛 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengbas 28959 . . . . 5 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
21eqcomd 2737 . . . 4 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (𝔼‘𝑁))
3 oveq2 7354 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43oveq2d 7362 . . . . 5 (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
5 df-ee 28869 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
6 ovex 7379 . . . . 5 (ℝ ↑m (1...𝑁)) ∈ V
74, 5, 6fvmpt 6929 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁)))
82, 7eqtrd 2766 . . 3 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
92ancli 548 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)))
109, 8jca 511 . . . 4 (𝑁 ∈ ℕ → ((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))))
11 difeq1 4066 . . . . 5 ((Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1211ad2antlr 727 . . . 4 ((((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))) ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1310, 12sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
148adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
15 simpll 766 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑁 ∈ ℕ)
168eleq2d 2817 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1716biimpcd 249 . . . . . . . 8 (𝑥 ∈ (Base‘(EEG‘𝑁)) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1817adantr 480 . . . . . . 7 ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1918impcom 407 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
2019adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
218difeq1d 4072 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2221eleq2d 2817 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↔ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2322biimpd 229 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2423adantld 490 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2524imp 406 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2625adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2714eleq2d 2817 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (𝑝 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑝 ∈ (ℝ ↑m (1...𝑁))))
2827biimpa 476 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑝 ∈ (ℝ ↑m (1...𝑁)))
29 eenglngeehlnmlem1 48837 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
30 eenglngeehlnmlem2 48838 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))))
3129, 30impbid 212 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3215, 20, 26, 28, 31syl31anc 1375 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3314, 32rabeqbidva 3411 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))} = {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
348, 13, 33mpoeq123dva 7420 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
35 eqid 2731 . . 3 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
36 eqid 2731 . . 3 (1...𝑁) = (1...𝑁)
3735, 36elntg2 28963 . 2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}))
38 nnnn0 12388 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
39 eqid 2731 . . . . . 6 (𝔼hil𝑁) = (𝔼hil𝑁)
4039ehlval 25341 . . . . 5 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4138, 40syl 17 . . . 4 (𝑁 ∈ ℕ → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4241fveq2d 6826 . . 3 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (LineM‘(ℝ^‘(1...𝑁))))
43 fzfid 13880 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
44 eqid 2731 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘(1...𝑁))
45 eqid 2731 . . . . 5 (ℝ ↑m (1...𝑁)) = (ℝ ↑m (1...𝑁))
46 eqid 2731 . . . . 5 (LineM‘(ℝ^‘(1...𝑁))) = (LineM‘(ℝ^‘(1...𝑁)))
4744, 45, 46rrxlinesc 48835 . . . 4 ((1...𝑁) ∈ Fin → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4843, 47syl 17 . . 3 (𝑁 ∈ ℕ → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4942, 48eqtrd 2766 . 2 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
5034, 37, 493eqtr4d 2776 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cdif 3894  {csn 4573  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  cn 12125  0cn0 12381  (,]cioc 13246  [,)cico 13247  [,]cicc 13248  ...cfz 13407  Basecbs 17120  ℝ^crrx 25310  𝔼hilcehl 25311  LineGclng 28412  𝔼cee 28866  EEGceeng 28955  LineMcline 48827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-tng 24499  df-tcph 25096  df-rrx 25312  df-ehl 25313  df-itv 28413  df-lng 28414  df-ee 28869  df-btwn 28870  df-eeng 28956  df-line 48829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator