Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnm Structured version   Visualization version   GIF version

Theorem eenglngeehlnm 48660
Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg 28999) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 48654). (Contributed by AV, 16-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnm (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))

Proof of Theorem eenglngeehlnm
Dummy variables 𝑖 𝑝 𝑡 𝑥 𝑦 𝑛 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengbas 28996 . . . . 5 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
21eqcomd 2743 . . . 4 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (𝔼‘𝑁))
3 oveq2 7439 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43oveq2d 7447 . . . . 5 (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
5 df-ee 28906 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
6 ovex 7464 . . . . 5 (ℝ ↑m (1...𝑁)) ∈ V
74, 5, 6fvmpt 7016 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁)))
82, 7eqtrd 2777 . . 3 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
92ancli 548 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)))
109, 8jca 511 . . . 4 (𝑁 ∈ ℕ → ((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))))
11 difeq1 4119 . . . . 5 ((Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1211ad2antlr 727 . . . 4 ((((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))) ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1310, 12sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
148adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
15 simpll 767 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑁 ∈ ℕ)
168eleq2d 2827 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1716biimpcd 249 . . . . . . . 8 (𝑥 ∈ (Base‘(EEG‘𝑁)) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1817adantr 480 . . . . . . 7 ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1918impcom 407 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
2019adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
218difeq1d 4125 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2221eleq2d 2827 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↔ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2322biimpd 229 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2423adantld 490 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2524imp 406 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2625adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2714eleq2d 2827 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (𝑝 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑝 ∈ (ℝ ↑m (1...𝑁))))
2827biimpa 476 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑝 ∈ (ℝ ↑m (1...𝑁)))
29 eenglngeehlnmlem1 48658 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
30 eenglngeehlnmlem2 48659 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))))
3129, 30impbid 212 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3215, 20, 26, 28, 31syl31anc 1375 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3314, 32rabeqbidva 3453 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))} = {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
348, 13, 33mpoeq123dva 7507 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
35 eqid 2737 . . 3 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
36 eqid 2737 . . 3 (1...𝑁) = (1...𝑁)
3735, 36elntg2 29000 . 2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}))
38 nnnn0 12533 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
39 eqid 2737 . . . . . 6 (𝔼hil𝑁) = (𝔼hil𝑁)
4039ehlval 25448 . . . . 5 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4138, 40syl 17 . . . 4 (𝑁 ∈ ℕ → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4241fveq2d 6910 . . 3 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (LineM‘(ℝ^‘(1...𝑁))))
43 fzfid 14014 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
44 eqid 2737 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘(1...𝑁))
45 eqid 2737 . . . . 5 (ℝ ↑m (1...𝑁)) = (ℝ ↑m (1...𝑁))
46 eqid 2737 . . . . 5 (LineM‘(ℝ^‘(1...𝑁))) = (LineM‘(ℝ^‘(1...𝑁)))
4744, 45, 46rrxlinesc 48656 . . . 4 ((1...𝑁) ∈ Fin → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4843, 47syl 17 . . 3 (𝑁 ∈ ℕ → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4942, 48eqtrd 2777 . 2 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
5034, 37, 493eqtr4d 2787 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  cdif 3948  {csn 4626  cfv 6561  (class class class)co 7431  cmpo 7433  m cmap 8866  Fincfn 8985  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  cn 12266  0cn0 12526  (,]cioc 13388  [,)cico 13389  [,]cicc 13390  ...cfz 13547  Basecbs 17247  ℝ^crrx 25417  𝔼hilcehl 25418  LineGclng 28442  𝔼cee 28903  EEGceeng 28992  LineMcline 48648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-refld 21623  df-dsmm 21752  df-frlm 21767  df-tng 24597  df-tcph 25203  df-rrx 25419  df-ehl 25420  df-itv 28443  df-lng 28444  df-ee 28906  df-btwn 28907  df-eeng 28993  df-line 48650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator