Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnm Structured version   Visualization version   GIF version

Theorem eenglngeehlnm 44746
Description: The line definition in the Tarski structure for the Euclidean geometry (see elntg 26770) corresponds to the definition of lines passing through two different points in a left module (see rrxlines 44740). (Contributed by AV, 16-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnm (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))

Proof of Theorem eenglngeehlnm
Dummy variables 𝑖 𝑝 𝑡 𝑥 𝑦 𝑛 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eengbas 26767 . . . . 5 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
21eqcomd 2827 . . . 4 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (𝔼‘𝑁))
3 oveq2 7164 . . . . . 6 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
43oveq2d 7172 . . . . 5 (𝑛 = 𝑁 → (ℝ ↑m (1...𝑛)) = (ℝ ↑m (1...𝑁)))
5 df-ee 26677 . . . . 5 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
6 ovex 7189 . . . . 5 (ℝ ↑m (1...𝑁)) ∈ V
74, 5, 6fvmpt 6768 . . . 4 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑m (1...𝑁)))
82, 7eqtrd 2856 . . 3 (𝑁 ∈ ℕ → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
92ancli 551 . . . . 5 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)))
109, 8jca 514 . . . 4 (𝑁 ∈ ℕ → ((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))))
11 difeq1 4092 . . . . 5 ((Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1211ad2antlr 725 . . . 4 ((((𝑁 ∈ ℕ ∧ (Base‘(EEG‘𝑁)) = (𝔼‘𝑁)) ∧ (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁))) ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
1310, 12sylan 582 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
148adantr 483 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)))
15 simpll 765 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑁 ∈ ℕ)
168eleq2d 2898 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1716biimpcd 251 . . . . . . . 8 (𝑥 ∈ (Base‘(EEG‘𝑁)) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1817adantr 483 . . . . . . 7 ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ ↑m (1...𝑁))))
1918impcom 410 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
2019adantr 483 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑥 ∈ (ℝ ↑m (1...𝑁)))
218difeq1d 4098 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2221eleq2d 2898 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↔ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2322biimpd 231 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2423adantld 493 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥})) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})))
2524imp 409 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2625adantr 483 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}))
2714eleq2d 2898 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → (𝑝 ∈ (Base‘(EEG‘𝑁)) ↔ 𝑝 ∈ (ℝ ↑m (1...𝑁))))
2827biimpa 479 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → 𝑝 ∈ (ℝ ↑m (1...𝑁)))
29 eenglngeehlnmlem1 44744 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
30 eenglngeehlnmlem2 44745 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))))
3129, 30impbid 214 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3215, 20, 26, 28, 31syl31anc 1369 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) ∧ 𝑝 ∈ (Base‘(EEG‘𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
3314, 32rabeqbidva 3486 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘(EEG‘𝑁)) ∧ 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}))) → {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))} = {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))})
348, 13, 33mpoeq123dva 7228 . 2 (𝑁 ∈ ℕ → (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
35 eqid 2821 . . 3 (Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁))
36 eqid 2821 . . 3 (1...𝑁) = (1...𝑁)
3735, 36elntg2 26771 . 2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥 ∈ (Base‘(EEG‘𝑁)), 𝑦 ∈ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘(EEG‘𝑁)) ∣ (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑧) · (𝑥𝑖)) + (𝑧 · (𝑦𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑣) · (𝑝𝑖)) + (𝑣 · (𝑦𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑤) · (𝑥𝑖)) + (𝑤 · (𝑝𝑖))))}))
38 nnnn0 11905 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
39 eqid 2821 . . . . . 6 (𝔼hil𝑁) = (𝔼hil𝑁)
4039ehlval 24017 . . . . 5 (𝑁 ∈ ℕ0 → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4138, 40syl 17 . . . 4 (𝑁 ∈ ℕ → (𝔼hil𝑁) = (ℝ^‘(1...𝑁)))
4241fveq2d 6674 . . 3 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (LineM‘(ℝ^‘(1...𝑁))))
43 fzfid 13342 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
44 eqid 2821 . . . . 5 (ℝ^‘(1...𝑁)) = (ℝ^‘(1...𝑁))
45 eqid 2821 . . . . 5 (ℝ ↑m (1...𝑁)) = (ℝ ↑m (1...𝑁))
46 eqid 2821 . . . . 5 (LineM‘(ℝ^‘(1...𝑁))) = (LineM‘(ℝ^‘(1...𝑁)))
4744, 45, 46rrxlinesc 44742 . . . 4 ((1...𝑁) ∈ Fin → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4843, 47syl 17 . . 3 (𝑁 ∈ ℕ → (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
4942, 48eqtrd 2856 . 2 (𝑁 ∈ ℕ → (LineM‘(𝔼hil𝑁)) = (𝑥 ∈ (ℝ ↑m (1...𝑁)), 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) ↦ {𝑝 ∈ (ℝ ↑m (1...𝑁)) ∣ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))}))
5034, 37, 493eqtr4d 2866 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (LineM‘(𝔼hil𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  cdif 3933  {csn 4567  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Fincfn 8509  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  cn 11638  0cn0 11898  (,]cioc 12740  [,)cico 12741  [,]cicc 12742  ...cfz 12893  Basecbs 16483  ℝ^crrx 23986  𝔼hilcehl 23987  LineGclng 26223  𝔼cee 26674  EEGceeng 26763  LineMcline 44734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-tng 23194  df-tcph 23773  df-rrx 23988  df-ehl 23989  df-itv 26224  df-lng 26225  df-ee 26677  df-btwn 26678  df-eeng 26764  df-line 44736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator