Step | Hyp | Ref
| Expression |
1 | | eengbas 27252 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(Base‘(EEG‘𝑁))) |
2 | 1 | eqcomd 2744 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(Base‘(EEG‘𝑁))
= (𝔼‘𝑁)) |
3 | | oveq2 7263 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = 𝑁 → (ℝ ↑m
(1...𝑛)) = (ℝ
↑m (1...𝑁))) |
5 | | df-ee 27162 |
. . . . 5
⊢ 𝔼
= (𝑛 ∈ ℕ ↦
(ℝ ↑m (1...𝑛))) |
6 | | ovex 7288 |
. . . . 5
⊢ (ℝ
↑m (1...𝑁))
∈ V |
7 | 4, 5, 6 | fvmpt 6857 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(𝔼‘𝑁) =
(ℝ ↑m (1...𝑁))) |
8 | 2, 7 | eqtrd 2778 |
. . 3
⊢ (𝑁 ∈ ℕ →
(Base‘(EEG‘𝑁))
= (ℝ ↑m (1...𝑁))) |
9 | 2 | ancli 548 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ ∧
(Base‘(EEG‘𝑁))
= (𝔼‘𝑁))) |
10 | 9, 8 | jca 511 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑁 ∈ ℕ ∧
(Base‘(EEG‘𝑁))
= (𝔼‘𝑁)) ∧
(Base‘(EEG‘𝑁))
= (ℝ ↑m (1...𝑁)))) |
11 | | difeq1 4046 |
. . . . 5
⊢
((Base‘(EEG‘𝑁)) = (ℝ ↑m (1...𝑁)) →
((Base‘(EEG‘𝑁))
∖ {𝑥}) = ((ℝ
↑m (1...𝑁))
∖ {𝑥})) |
12 | 11 | ad2antlr 723 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧
(Base‘(EEG‘𝑁))
= (𝔼‘𝑁)) ∧
(Base‘(EEG‘𝑁))
= (ℝ ↑m (1...𝑁))) ∧ 𝑥 ∈ (Base‘(EEG‘𝑁))) →
((Base‘(EEG‘𝑁))
∖ {𝑥}) = ((ℝ
↑m (1...𝑁))
∖ {𝑥})) |
13 | 10, 12 | sylan 579 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈
(Base‘(EEG‘𝑁)))
→ ((Base‘(EEG‘𝑁)) ∖ {𝑥}) = ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) |
14 | 8 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) →
(Base‘(EEG‘𝑁))
= (ℝ ↑m (1...𝑁))) |
15 | | simpll 763 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) ∧ 𝑝 ∈
(Base‘(EEG‘𝑁)))
→ 𝑁 ∈
ℕ) |
16 | 8 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑥 ∈
(Base‘(EEG‘𝑁))
↔ 𝑥 ∈ (ℝ
↑m (1...𝑁)))) |
17 | 16 | biimpcd 248 |
. . . . . . . 8
⊢ (𝑥 ∈
(Base‘(EEG‘𝑁))
→ (𝑁 ∈ ℕ
→ 𝑥 ∈ (ℝ
↑m (1...𝑁)))) |
18 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥})) → (𝑁 ∈ ℕ → 𝑥 ∈ (ℝ
↑m (1...𝑁)))) |
19 | 18 | impcom 407 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) → 𝑥 ∈ (ℝ
↑m (1...𝑁))) |
20 | 19 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) ∧ 𝑝 ∈
(Base‘(EEG‘𝑁)))
→ 𝑥 ∈ (ℝ
↑m (1...𝑁))) |
21 | 8 | difeq1d 4052 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
((Base‘(EEG‘𝑁))
∖ {𝑥}) = ((ℝ
↑m (1...𝑁))
∖ {𝑥})) |
22 | 21 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}) ↔ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}))) |
23 | 22 | biimpd 228 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}) → 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}))) |
24 | 23 | adantld 490 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥})) → 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}))) |
25 | 24 | imp 406 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) → 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) |
26 | 25 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) ∧ 𝑝 ∈
(Base‘(EEG‘𝑁)))
→ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) |
27 | 14 | eleq2d 2824 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) →
(𝑝 ∈
(Base‘(EEG‘𝑁))
↔ 𝑝 ∈ (ℝ
↑m (1...𝑁)))) |
28 | 27 | biimpa 476 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) ∧ 𝑝 ∈
(Base‘(EEG‘𝑁)))
→ 𝑝 ∈ (ℝ
↑m (1...𝑁))) |
29 | | eenglngeehlnmlem1 45971 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
30 | | eenglngeehlnmlem2 45972 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖)))))) |
31 | 29, 30 | impbid 211 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → ((∃𝑧 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
32 | 15, 20, 26, 28, 31 | syl31anc 1371 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) ∧ 𝑝 ∈
(Base‘(EEG‘𝑁)))
→ ((∃𝑧 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖)))) ↔ ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
33 | 14, 32 | rabeqbidva 3411 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈
(Base‘(EEG‘𝑁))
∧ 𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}))) →
{𝑝 ∈
(Base‘(EEG‘𝑁))
∣ (∃𝑧 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖))))} = {𝑝 ∈ (ℝ ↑m
(1...𝑁)) ∣
∃𝑡 ∈ ℝ
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))}) |
34 | 8, 13, 33 | mpoeq123dva 7327 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑥 ∈
(Base‘(EEG‘𝑁)),
𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}) ↦ {𝑝 ∈
(Base‘(EEG‘𝑁))
∣ (∃𝑧 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖))))}) = (𝑥 ∈ (ℝ ↑m
(1...𝑁)), 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) ↦ {𝑝 ∈ (ℝ
↑m (1...𝑁))
∣ ∃𝑡 ∈
ℝ ∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
35 | | eqid 2738 |
. . 3
⊢
(Base‘(EEG‘𝑁)) = (Base‘(EEG‘𝑁)) |
36 | | eqid 2738 |
. . 3
⊢
(1...𝑁) = (1...𝑁) |
37 | 35, 36 | elntg2 27256 |
. 2
⊢ (𝑁 ∈ ℕ →
(LineG‘(EEG‘𝑁))
= (𝑥 ∈
(Base‘(EEG‘𝑁)),
𝑦 ∈
((Base‘(EEG‘𝑁))
∖ {𝑥}) ↦ {𝑝 ∈
(Base‘(EEG‘𝑁))
∣ (∃𝑧 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑧) · (𝑥‘𝑖)) + (𝑧 · (𝑦‘𝑖))) ∨ ∃𝑣 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑣) · (𝑝‘𝑖)) + (𝑣 · (𝑦‘𝑖))) ∨ ∃𝑤 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑤) · (𝑥‘𝑖)) + (𝑤 · (𝑝‘𝑖))))})) |
38 | | nnnn0 12170 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
39 | | eqid 2738 |
. . . . . 6
⊢
(𝔼hil‘𝑁) = (𝔼hil‘𝑁) |
40 | 39 | ehlval 24483 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝔼hil‘𝑁) = (ℝ^‘(1...𝑁))) |
41 | 38, 40 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(𝔼hil‘𝑁) = (ℝ^‘(1...𝑁))) |
42 | 41 | fveq2d 6760 |
. . 3
⊢ (𝑁 ∈ ℕ →
(LineM‘(𝔼hil‘𝑁)) =
(LineM‘(ℝ^‘(1...𝑁)))) |
43 | | fzfid 13621 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(1...𝑁) ∈
Fin) |
44 | | eqid 2738 |
. . . . 5
⊢
(ℝ^‘(1...𝑁)) = (ℝ^‘(1...𝑁)) |
45 | | eqid 2738 |
. . . . 5
⊢ (ℝ
↑m (1...𝑁))
= (ℝ ↑m (1...𝑁)) |
46 | | eqid 2738 |
. . . . 5
⊢
(LineM‘(ℝ^‘(1...𝑁))) =
(LineM‘(ℝ^‘(1...𝑁))) |
47 | 44, 45, 46 | rrxlinesc 45969 |
. . . 4
⊢
((1...𝑁) ∈ Fin
→ (LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m
(1...𝑁)), 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) ↦ {𝑝 ∈ (ℝ
↑m (1...𝑁))
∣ ∃𝑡 ∈
ℝ ∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
48 | 43, 47 | syl 17 |
. . 3
⊢ (𝑁 ∈ ℕ →
(LineM‘(ℝ^‘(1...𝑁))) = (𝑥 ∈ (ℝ ↑m
(1...𝑁)), 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) ↦ {𝑝 ∈ (ℝ
↑m (1...𝑁))
∣ ∃𝑡 ∈
ℝ ∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
49 | 42, 48 | eqtrd 2778 |
. 2
⊢ (𝑁 ∈ ℕ →
(LineM‘(𝔼hil‘𝑁)) = (𝑥 ∈ (ℝ ↑m
(1...𝑁)), 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) ↦ {𝑝 ∈ (ℝ
↑m (1...𝑁))
∣ ∃𝑡 ∈
ℝ ∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))})) |
50 | 34, 37, 49 | 3eqtr4d 2788 |
1
⊢ (𝑁 ∈ ℕ →
(LineG‘(EEG‘𝑁))
= (LineM‘(𝔼hil‘𝑁))) |