| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-eigvec | Structured version Visualization version GIF version | ||
| Description: Define the eigenvector function. Theorem eleigveccl 31945 shows that eigvec‘𝑇, the set of eigenvectors of Hilbert space operator 𝑇, are Hilbert space vectors. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-eigvec | ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cei 30945 | . 2 class eigvec | |
| 2 | vt | . . 3 setvar 𝑡 | |
| 3 | chba 30905 | . . . 4 class ℋ | |
| 4 | cmap 8845 | . . . 4 class ↑m | |
| 5 | 3, 3, 4 | co 7410 | . . 3 class ( ℋ ↑m ℋ) |
| 6 | vx | . . . . . . . 8 setvar 𝑥 | |
| 7 | 6 | cv 1539 | . . . . . . 7 class 𝑥 |
| 8 | 2 | cv 1539 | . . . . . . 7 class 𝑡 |
| 9 | 7, 8 | cfv 6536 | . . . . . 6 class (𝑡‘𝑥) |
| 10 | vz | . . . . . . . 8 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑧 |
| 12 | csm 30907 | . . . . . . 7 class ·ℎ | |
| 13 | 11, 7, 12 | co 7410 | . . . . . 6 class (𝑧 ·ℎ 𝑥) |
| 14 | 9, 13 | wceq 1540 | . . . . 5 wff (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥) |
| 15 | cc 11132 | . . . . 5 class ℂ | |
| 16 | 14, 10, 15 | wrex 3061 | . . . 4 wff ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥) |
| 17 | c0h 30921 | . . . . 5 class 0ℋ | |
| 18 | 3, 17 | cdif 3928 | . . . 4 class ( ℋ ∖ 0ℋ) |
| 19 | 16, 6, 18 | crab 3420 | . . 3 class {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)} |
| 20 | 2, 5, 19 | cmpt 5206 | . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) |
| 21 | 1, 20 | wceq 1540 | 1 wff eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: eigvecval 31882 |
| Copyright terms: Public domain | W3C validator |