HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31829
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31936 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30935 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30894 . . . 4 class
4 cmap 8750 . . . 4 class m
53, 3, 4co 7346 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1540 . . . . 5 class 𝑡
8 cei 30934 . . . . 5 class eigvec
97, 8cfv 6481 . . . 4 class (eigvec‘𝑡)
106cv 1540 . . . . . . 7 class 𝑥
1110, 7cfv 6481 . . . . . 6 class (𝑡𝑥)
12 csp 30897 . . . . . 6 class ·ih
1311, 10, 12co 7346 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30898 . . . . . . 7 class norm
1510, 14cfv 6481 . . . . . 6 class (norm𝑥)
16 c2 12177 . . . . . 6 class 2
17 cexp 13965 . . . . . 6 class
1815, 16, 17co 7346 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11771 . . . . 5 class /
2013, 18, 19co 7346 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5172 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5172 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1541 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31872
  Copyright terms: Public domain W3C validator