HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31886
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31993 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30992 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30951 . . . 4 class
4 cmap 8884 . . . 4 class m
53, 3, 4co 7448 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1536 . . . . 5 class 𝑡
8 cei 30991 . . . . 5 class eigvec
97, 8cfv 6573 . . . 4 class (eigvec‘𝑡)
106cv 1536 . . . . . . 7 class 𝑥
1110, 7cfv 6573 . . . . . 6 class (𝑡𝑥)
12 csp 30954 . . . . . 6 class ·ih
1311, 10, 12co 7448 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30955 . . . . . . 7 class norm
1510, 14cfv 6573 . . . . . 6 class (norm𝑥)
16 c2 12348 . . . . . 6 class 2
17 cexp 14112 . . . . . 6 class
1815, 16, 17co 7448 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11947 . . . . 5 class /
2013, 18, 19co 7448 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5249 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5249 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1537 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31929
  Copyright terms: Public domain W3C validator