Detailed syntax breakdown of Definition df-eigval
Step | Hyp | Ref
| Expression |
1 | | cel 29223 |
. 2
class
eigval |
2 | | vt |
. . 3
setvar 𝑡 |
3 | | chba 29182 |
. . . 4
class
ℋ |
4 | | cmap 8573 |
. . . 4
class
↑m |
5 | 3, 3, 4 | co 7255 |
. . 3
class ( ℋ
↑m ℋ) |
6 | | vx |
. . . 4
setvar 𝑥 |
7 | 2 | cv 1538 |
. . . . 5
class 𝑡 |
8 | | cei 29222 |
. . . . 5
class
eigvec |
9 | 7, 8 | cfv 6418 |
. . . 4
class
(eigvec‘𝑡) |
10 | 6 | cv 1538 |
. . . . . . 7
class 𝑥 |
11 | 10, 7 | cfv 6418 |
. . . . . 6
class (𝑡‘𝑥) |
12 | | csp 29185 |
. . . . . 6
class
·ih |
13 | 11, 10, 12 | co 7255 |
. . . . 5
class ((𝑡‘𝑥) ·ih 𝑥) |
14 | | cno 29186 |
. . . . . . 7
class
normℎ |
15 | 10, 14 | cfv 6418 |
. . . . . 6
class
(normℎ‘𝑥) |
16 | | c2 11958 |
. . . . . 6
class
2 |
17 | | cexp 13710 |
. . . . . 6
class
↑ |
18 | 15, 16, 17 | co 7255 |
. . . . 5
class
((normℎ‘𝑥)↑2) |
19 | | cdiv 11562 |
. . . . 5
class
/ |
20 | 13, 18, 19 | co 7255 |
. . . 4
class (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2)) |
21 | 6, 9, 20 | cmpt 5153 |
. . 3
class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2))) |
22 | 2, 5, 21 | cmpt 5153 |
. 2
class (𝑡 ∈ ( ℋ
↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2)))) |
23 | 1, 22 | wceq 1539 |
1
wff eigval =
(𝑡 ∈ ( ℋ
↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2)))) |