HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31790
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31897 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30896 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30855 . . . 4 class
4 cmap 8802 . . . 4 class m
53, 3, 4co 7390 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1539 . . . . 5 class 𝑡
8 cei 30895 . . . . 5 class eigvec
97, 8cfv 6514 . . . 4 class (eigvec‘𝑡)
106cv 1539 . . . . . . 7 class 𝑥
1110, 7cfv 6514 . . . . . 6 class (𝑡𝑥)
12 csp 30858 . . . . . 6 class ·ih
1311, 10, 12co 7390 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30859 . . . . . . 7 class norm
1510, 14cfv 6514 . . . . . 6 class (norm𝑥)
16 c2 12248 . . . . . 6 class 2
17 cexp 14033 . . . . . 6 class
1815, 16, 17co 7390 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11842 . . . . 5 class /
2013, 18, 19co 7390 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5191 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5191 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1540 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31833
  Copyright terms: Public domain W3C validator