HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 30117
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 30224 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 29223 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 29182 . . . 4 class
4 cmap 8573 . . . 4 class m
53, 3, 4co 7255 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1538 . . . . 5 class 𝑡
8 cei 29222 . . . . 5 class eigvec
97, 8cfv 6418 . . . 4 class (eigvec‘𝑡)
106cv 1538 . . . . . . 7 class 𝑥
1110, 7cfv 6418 . . . . . 6 class (𝑡𝑥)
12 csp 29185 . . . . . 6 class ·ih
1311, 10, 12co 7255 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 29186 . . . . . . 7 class norm
1510, 14cfv 6418 . . . . . 6 class (norm𝑥)
16 c2 11958 . . . . . 6 class 2
17 cexp 13710 . . . . . 6 class
1815, 16, 17co 7255 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11562 . . . . 5 class /
2013, 18, 19co 7255 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5153 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5153 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1539 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  30160
  Copyright terms: Public domain W3C validator