HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31836
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31943 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30942 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30901 . . . 4 class
4 cmap 8756 . . . 4 class m
53, 3, 4co 7352 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1540 . . . . 5 class 𝑡
8 cei 30941 . . . . 5 class eigvec
97, 8cfv 6486 . . . 4 class (eigvec‘𝑡)
106cv 1540 . . . . . . 7 class 𝑥
1110, 7cfv 6486 . . . . . 6 class (𝑡𝑥)
12 csp 30904 . . . . . 6 class ·ih
1311, 10, 12co 7352 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30905 . . . . . . 7 class norm
1510, 14cfv 6486 . . . . . 6 class (norm𝑥)
16 c2 12187 . . . . . 6 class 2
17 cexp 13970 . . . . . 6 class
1815, 16, 17co 7352 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11781 . . . . 5 class /
2013, 18, 19co 7352 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5174 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5174 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1541 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31879
  Copyright terms: Public domain W3C validator