HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31783
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31890 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30889 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30848 . . . 4 class
4 cmap 8799 . . . 4 class m
53, 3, 4co 7387 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1539 . . . . 5 class 𝑡
8 cei 30888 . . . . 5 class eigvec
97, 8cfv 6511 . . . 4 class (eigvec‘𝑡)
106cv 1539 . . . . . . 7 class 𝑥
1110, 7cfv 6511 . . . . . 6 class (𝑡𝑥)
12 csp 30851 . . . . . 6 class ·ih
1311, 10, 12co 7387 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30852 . . . . . . 7 class norm
1510, 14cfv 6511 . . . . . 6 class (norm𝑥)
16 c2 12241 . . . . . 6 class 2
17 cexp 14026 . . . . . 6 class
1815, 16, 17co 7387 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11835 . . . . 5 class /
2013, 18, 19co 7387 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5188 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5188 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1540 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31826
  Copyright terms: Public domain W3C validator