HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31816
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31923 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30922 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30881 . . . 4 class
4 cmap 8760 . . . 4 class m
53, 3, 4co 7353 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1539 . . . . 5 class 𝑡
8 cei 30921 . . . . 5 class eigvec
97, 8cfv 6486 . . . 4 class (eigvec‘𝑡)
106cv 1539 . . . . . . 7 class 𝑥
1110, 7cfv 6486 . . . . . 6 class (𝑡𝑥)
12 csp 30884 . . . . . 6 class ·ih
1311, 10, 12co 7353 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30885 . . . . . . 7 class norm
1510, 14cfv 6486 . . . . . 6 class (norm𝑥)
16 c2 12201 . . . . . 6 class 2
17 cexp 13986 . . . . . 6 class
1815, 16, 17co 7353 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11795 . . . . 5 class /
2013, 18, 19co 7353 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5176 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5176 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1540 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31859
  Copyright terms: Public domain W3C validator