HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 30216
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 30323 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 29322 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 29281 . . . 4 class
4 cmap 8615 . . . 4 class m
53, 3, 4co 7275 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1538 . . . . 5 class 𝑡
8 cei 29321 . . . . 5 class eigvec
97, 8cfv 6433 . . . 4 class (eigvec‘𝑡)
106cv 1538 . . . . . . 7 class 𝑥
1110, 7cfv 6433 . . . . . 6 class (𝑡𝑥)
12 csp 29284 . . . . . 6 class ·ih
1311, 10, 12co 7275 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 29285 . . . . . . 7 class norm
1510, 14cfv 6433 . . . . . 6 class (norm𝑥)
16 c2 12028 . . . . . 6 class 2
17 cexp 13782 . . . . . 6 class
1815, 16, 17co 7275 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11632 . . . . 5 class /
2013, 18, 19co 7275 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5157 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5157 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1539 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  30259
  Copyright terms: Public domain W3C validator