HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 29285
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 29392 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 28389 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 28348 . . . 4 class
4 cmap 8140 . . . 4 class 𝑚
53, 3, 4co 6922 . . 3 class ( ℋ ↑𝑚 ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1600 . . . . 5 class 𝑡
8 cei 28388 . . . . 5 class eigvec
97, 8cfv 6135 . . . 4 class (eigvec‘𝑡)
106cv 1600 . . . . . . 7 class 𝑥
1110, 7cfv 6135 . . . . . 6 class (𝑡𝑥)
12 csp 28351 . . . . . 6 class ·ih
1311, 10, 12co 6922 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 28352 . . . . . . 7 class norm
1510, 14cfv 6135 . . . . . 6 class (norm𝑥)
16 c2 11430 . . . . . 6 class 2
17 cexp 13178 . . . . . 6 class
1815, 16, 17co 6922 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11032 . . . . 5 class /
2013, 18, 19co 6922 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 4965 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 4965 . 2 class (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1601 1 wff eigval = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  29328
  Copyright terms: Public domain W3C validator