HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31840
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31947 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30946 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30905 . . . 4 class
4 cmap 8845 . . . 4 class m
53, 3, 4co 7410 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1539 . . . . 5 class 𝑡
8 cei 30945 . . . . 5 class eigvec
97, 8cfv 6536 . . . 4 class (eigvec‘𝑡)
106cv 1539 . . . . . . 7 class 𝑥
1110, 7cfv 6536 . . . . . 6 class (𝑡𝑥)
12 csp 30908 . . . . . 6 class ·ih
1311, 10, 12co 7410 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30909 . . . . . . 7 class norm
1510, 14cfv 6536 . . . . . 6 class (norm𝑥)
16 c2 12300 . . . . . 6 class 2
17 cexp 14084 . . . . . 6 class
1815, 16, 17co 7410 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11899 . . . . 5 class /
2013, 18, 19co 7410 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5206 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5206 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1540 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31883
  Copyright terms: Public domain W3C validator