HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-eigval Structured version   Visualization version   GIF version

Definition df-eigval 31883
Description: Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 31990 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-eigval eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Distinct variable group:   𝑥,𝑡

Detailed syntax breakdown of Definition df-eigval
StepHypRef Expression
1 cel 30989 . 2 class eigval
2 vt . . 3 setvar 𝑡
3 chba 30948 . . . 4 class
4 cmap 8865 . . . 4 class m
53, 3, 4co 7431 . . 3 class ( ℋ ↑m ℋ)
6 vx . . . 4 setvar 𝑥
72cv 1536 . . . . 5 class 𝑡
8 cei 30988 . . . . 5 class eigvec
97, 8cfv 6563 . . . 4 class (eigvec‘𝑡)
106cv 1536 . . . . . . 7 class 𝑥
1110, 7cfv 6563 . . . . . 6 class (𝑡𝑥)
12 csp 30951 . . . . . 6 class ·ih
1311, 10, 12co 7431 . . . . 5 class ((𝑡𝑥) ·ih 𝑥)
14 cno 30952 . . . . . . 7 class norm
1510, 14cfv 6563 . . . . . 6 class (norm𝑥)
16 c2 12319 . . . . . 6 class 2
17 cexp 14099 . . . . . 6 class
1815, 16, 17co 7431 . . . . 5 class ((norm𝑥)↑2)
19 cdiv 11918 . . . . 5 class /
2013, 18, 19co 7431 . . . 4 class (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))
216, 9, 20cmpt 5231 . . 3 class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
222, 5, 21cmpt 5231 . 2 class (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
231, 22wceq 1537 1 wff eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
Colors of variables: wff setvar class
This definition is referenced by:  eigvalfval  31926
  Copyright terms: Public domain W3C validator