Detailed syntax breakdown of Definition df-eigval
| Step | Hyp | Ref
| Expression |
| 1 | | cel 30946 |
. 2
class
eigval |
| 2 | | vt |
. . 3
setvar 𝑡 |
| 3 | | chba 30905 |
. . . 4
class
ℋ |
| 4 | | cmap 8845 |
. . . 4
class
↑m |
| 5 | 3, 3, 4 | co 7410 |
. . 3
class ( ℋ
↑m ℋ) |
| 6 | | vx |
. . . 4
setvar 𝑥 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑡 |
| 8 | | cei 30945 |
. . . . 5
class
eigvec |
| 9 | 7, 8 | cfv 6536 |
. . . 4
class
(eigvec‘𝑡) |
| 10 | 6 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 11 | 10, 7 | cfv 6536 |
. . . . . 6
class (𝑡‘𝑥) |
| 12 | | csp 30908 |
. . . . . 6
class
·ih |
| 13 | 11, 10, 12 | co 7410 |
. . . . 5
class ((𝑡‘𝑥) ·ih 𝑥) |
| 14 | | cno 30909 |
. . . . . . 7
class
normℎ |
| 15 | 10, 14 | cfv 6536 |
. . . . . 6
class
(normℎ‘𝑥) |
| 16 | | c2 12300 |
. . . . . 6
class
2 |
| 17 | | cexp 14084 |
. . . . . 6
class
↑ |
| 18 | 15, 16, 17 | co 7410 |
. . . . 5
class
((normℎ‘𝑥)↑2) |
| 19 | | cdiv 11899 |
. . . . 5
class
/ |
| 20 | 13, 18, 19 | co 7410 |
. . . 4
class (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2)) |
| 21 | 6, 9, 20 | cmpt 5206 |
. . 3
class (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2))) |
| 22 | 2, 5, 21 | cmpt 5206 |
. 2
class (𝑡 ∈ ( ℋ
↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2)))) |
| 23 | 1, 22 | wceq 1540 |
1
wff eigval =
(𝑡 ∈ ( ℋ
↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) /
((normℎ‘𝑥)↑2)))) |