![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigvecval | Structured version Visualization version GIF version |
Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvecval | ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 28442 | . . . 4 ⊢ ℋ ∈ V | |
2 | difexg 5045 | . . . 4 ⊢ ( ℋ ∈ V → ( ℋ ∖ 0ℋ) ∈ V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( ℋ ∖ 0ℋ) ∈ V |
4 | 3 | rabex 5049 | . 2 ⊢ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)} ∈ V |
5 | fveq1 6445 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
6 | 5 | eqeq1d 2779 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
7 | 6 | rexbidv 3236 | . . 3 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
8 | 7 | rabbidv 3385 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)} = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
9 | df-eigvec 29298 | . 2 ⊢ eigvec = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)}) | |
10 | 4, 1, 1, 8, 9 | fvmptmap 8178 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ∃wrex 3090 {crab 3093 Vcvv 3397 ∖ cdif 3788 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 ℋchba 28362 ·ℎ csm 28364 0ℋc0h 28378 eigveccei 28402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-hilex 28442 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 df-eigvec 29298 |
This theorem is referenced by: eleigvec 29402 |
Copyright terms: Public domain | W3C validator |