| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigvecval | Structured version Visualization version GIF version | ||
| Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigvecval | ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30981 | . . . 4 ⊢ ℋ ∈ V | |
| 2 | difexg 5269 | . . . 4 ⊢ ( ℋ ∈ V → ( ℋ ∖ 0ℋ) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( ℋ ∖ 0ℋ) ∈ V |
| 4 | 3 | rabex 5279 | . 2 ⊢ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)} ∈ V |
| 5 | fveq1 6827 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
| 6 | 5 | eqeq1d 2735 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
| 7 | 6 | rexbidv 3157 | . . 3 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
| 8 | 7 | rabbidv 3403 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)} = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
| 9 | df-eigvec 31835 | . 2 ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)}) | |
| 10 | 4, 1, 1, 8, 9 | fvmptmap 8811 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℋchba 30901 ·ℎ csm 30903 0ℋc0h 30917 eigveccei 30941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-hilex 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-eigvec 31835 |
| This theorem is referenced by: eleigvec 31939 |
| Copyright terms: Public domain | W3C validator |