![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigvecval | Structured version Visualization version GIF version |
Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvecval | ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31031 | . . . 4 ⊢ ℋ ∈ V | |
2 | difexg 5347 | . . . 4 ⊢ ( ℋ ∈ V → ( ℋ ∖ 0ℋ) ∈ V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( ℋ ∖ 0ℋ) ∈ V |
4 | 3 | rabex 5357 | . 2 ⊢ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)} ∈ V |
5 | fveq1 6919 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
6 | 5 | eqeq1d 2742 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
7 | 6 | rexbidv 3185 | . . 3 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
8 | 7 | rabbidv 3451 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)} = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
9 | df-eigvec 31885 | . 2 ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)}) | |
10 | 4, 1, 1, 8, 9 | fvmptmap 8939 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℋchba 30951 ·ℎ csm 30953 0ℋc0h 30967 eigveccei 30991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-eigvec 31885 |
This theorem is referenced by: eleigvec 31989 |
Copyright terms: Public domain | W3C validator |