| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigvecval | Structured version Visualization version GIF version | ||
| Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigvecval | ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30928 | . . . 4 ⊢ ℋ ∈ V | |
| 2 | difexg 5284 | . . . 4 ⊢ ( ℋ ∈ V → ( ℋ ∖ 0ℋ) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( ℋ ∖ 0ℋ) ∈ V |
| 4 | 3 | rabex 5294 | . 2 ⊢ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)} ∈ V |
| 5 | fveq1 6857 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
| 6 | 5 | eqeq1d 2731 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
| 7 | 6 | rexbidv 3157 | . . 3 ⊢ (𝑡 = 𝑇 → (∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥) ↔ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥))) |
| 8 | 7 | rabbidv 3413 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)} = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
| 9 | df-eigvec 31782 | . 2 ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑡‘𝑥) = (𝑦 ·ℎ 𝑥)}) | |
| 10 | 4, 1, 1, 8, 9 | fvmptmap 8854 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℋchba 30848 ·ℎ csm 30850 0ℋc0h 30864 eigveccei 30888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-eigvec 31782 |
| This theorem is referenced by: eleigvec 31886 |
| Copyright terms: Public domain | W3C validator |