HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvecval Structured version   Visualization version   GIF version

Theorem eigvecval 31825
Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
eigvecval (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑦 ∈ ℂ (𝑇𝑥) = (𝑦 · 𝑥)})
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem eigvecval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30928 . . . 4 ℋ ∈ V
2 difexg 5284 . . . 4 ( ℋ ∈ V → ( ℋ ∖ 0) ∈ V)
31, 2ax-mp 5 . . 3 ( ℋ ∖ 0) ∈ V
43rabex 5294 . 2 {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑦 ∈ ℂ (𝑇𝑥) = (𝑦 · 𝑥)} ∈ V
5 fveq1 6857 . . . . 5 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
65eqeq1d 2731 . . . 4 (𝑡 = 𝑇 → ((𝑡𝑥) = (𝑦 · 𝑥) ↔ (𝑇𝑥) = (𝑦 · 𝑥)))
76rexbidv 3157 . . 3 (𝑡 = 𝑇 → (∃𝑦 ∈ ℂ (𝑡𝑥) = (𝑦 · 𝑥) ↔ ∃𝑦 ∈ ℂ (𝑇𝑥) = (𝑦 · 𝑥)))
87rabbidv 3413 . 2 (𝑡 = 𝑇 → {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑦 ∈ ℂ (𝑡𝑥) = (𝑦 · 𝑥)} = {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑦 ∈ ℂ (𝑇𝑥) = (𝑦 · 𝑥)})
9 df-eigvec 31782 . 2 eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑦 ∈ ℂ (𝑡𝑥) = (𝑦 · 𝑥)})
104, 1, 1, 8, 9fvmptmap 8854 1 (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑦 ∈ ℂ (𝑇𝑥) = (𝑦 · 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  chba 30848   · csm 30850  0c0h 30864  eigveccei 30888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-hilex 30928
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-eigvec 31782
This theorem is referenced by:  eleigvec  31886
  Copyright terms: Public domain W3C validator