Detailed syntax breakdown of Definition df-evls
| Step | Hyp | Ref
| Expression |
| 1 | | ces 22096 |
. 2
class
evalSub |
| 2 | | vi |
. . 3
setvar 𝑖 |
| 3 | | vs |
. . 3
setvar 𝑠 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | ccrg 20231 |
. . 3
class
CRing |
| 6 | | vb |
. . . 4
setvar 𝑏 |
| 7 | 3 | cv 1539 |
. . . . 5
class 𝑠 |
| 8 | | cbs 17247 |
. . . . 5
class
Base |
| 9 | 7, 8 | cfv 6561 |
. . . 4
class
(Base‘𝑠) |
| 10 | | vr |
. . . . 5
setvar 𝑟 |
| 11 | | csubrg 20569 |
. . . . . 6
class
SubRing |
| 12 | 7, 11 | cfv 6561 |
. . . . 5
class
(SubRing‘𝑠) |
| 13 | | vw |
. . . . . 6
setvar 𝑤 |
| 14 | 2 | cv 1539 |
. . . . . . 7
class 𝑖 |
| 15 | 10 | cv 1539 |
. . . . . . . 8
class 𝑟 |
| 16 | | cress 17274 |
. . . . . . . 8
class
↾s |
| 17 | 7, 15, 16 | co 7431 |
. . . . . . 7
class (𝑠 ↾s 𝑟) |
| 18 | | cmpl 21926 |
. . . . . . 7
class
mPoly |
| 19 | 14, 17, 18 | co 7431 |
. . . . . 6
class (𝑖 mPoly (𝑠 ↾s 𝑟)) |
| 20 | | vf |
. . . . . . . . . . 11
setvar 𝑓 |
| 21 | 20 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 22 | 13 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 23 | | cascl 21872 |
. . . . . . . . . . 11
class
algSc |
| 24 | 22, 23 | cfv 6561 |
. . . . . . . . . 10
class
(algSc‘𝑤) |
| 25 | 21, 24 | ccom 5689 |
. . . . . . . . 9
class (𝑓 ∘ (algSc‘𝑤)) |
| 26 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 27 | 6 | cv 1539 |
. . . . . . . . . . . 12
class 𝑏 |
| 28 | | cmap 8866 |
. . . . . . . . . . . 12
class
↑m |
| 29 | 27, 14, 28 | co 7431 |
. . . . . . . . . . 11
class (𝑏 ↑m 𝑖) |
| 30 | 26 | cv 1539 |
. . . . . . . . . . . 12
class 𝑥 |
| 31 | 30 | csn 4626 |
. . . . . . . . . . 11
class {𝑥} |
| 32 | 29, 31 | cxp 5683 |
. . . . . . . . . 10
class ((𝑏 ↑m 𝑖) × {𝑥}) |
| 33 | 26, 15, 32 | cmpt 5225 |
. . . . . . . . 9
class (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) |
| 34 | 25, 33 | wceq 1540 |
. . . . . . . 8
wff (𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) |
| 35 | | cmvr 21925 |
. . . . . . . . . . 11
class
mVar |
| 36 | 14, 17, 35 | co 7431 |
. . . . . . . . . 10
class (𝑖 mVar (𝑠 ↾s 𝑟)) |
| 37 | 21, 36 | ccom 5689 |
. . . . . . . . 9
class (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) |
| 38 | | vg |
. . . . . . . . . . 11
setvar 𝑔 |
| 39 | 38 | cv 1539 |
. . . . . . . . . . . 12
class 𝑔 |
| 40 | 30, 39 | cfv 6561 |
. . . . . . . . . . 11
class (𝑔‘𝑥) |
| 41 | 38, 29, 40 | cmpt 5225 |
. . . . . . . . . 10
class (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)) |
| 42 | 26, 14, 41 | cmpt 5225 |
. . . . . . . . 9
class (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) |
| 43 | 37, 42 | wceq 1540 |
. . . . . . . 8
wff (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) |
| 44 | 34, 43 | wa 395 |
. . . . . . 7
wff ((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))) |
| 45 | | cpws 17491 |
. . . . . . . . 9
class
↑s |
| 46 | 7, 29, 45 | co 7431 |
. . . . . . . 8
class (𝑠 ↑s
(𝑏 ↑m 𝑖)) |
| 47 | | crh 20469 |
. . . . . . . 8
class
RingHom |
| 48 | 22, 46, 47 | co 7431 |
. . . . . . 7
class (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖))) |
| 49 | 44, 20, 48 | crio 7387 |
. . . . . 6
class
(℩𝑓
∈ (𝑤 RingHom (𝑠 ↑s
(𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) |
| 50 | 13, 19, 49 | csb 3899 |
. . . . 5
class
⦋(𝑖
mPoly (𝑠
↾s 𝑟)) /
𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) |
| 51 | 10, 12, 50 | cmpt 5225 |
. . . 4
class (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 52 | 6, 9, 51 | csb 3899 |
. . 3
class
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 53 | 2, 3, 4, 5, 52 | cmpo 7433 |
. 2
class (𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
| 54 | 1, 53 | wceq 1540 |
1
wff evalSub =
(𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |