MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-evl Structured version   Visualization version   GIF version

Definition df-evl 21290
Description: A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Assertion
Ref Expression
df-evl eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
Distinct variable group:   𝑖,𝑟

Detailed syntax breakdown of Definition df-evl
StepHypRef Expression
1 cevl 21288 . 2 class eval
2 vi . . 3 setvar 𝑖
3 vr . . 3 setvar 𝑟
4 cvv 3431 . . 3 class V
53cv 1537 . . . . 5 class 𝑟
6 cbs 16919 . . . . 5 class Base
75, 6cfv 6435 . . . 4 class (Base‘𝑟)
82cv 1537 . . . . 5 class 𝑖
9 ces 21287 . . . . 5 class evalSub
108, 5, 9co 7282 . . . 4 class (𝑖 evalSub 𝑟)
117, 10cfv 6435 . . 3 class ((𝑖 evalSub 𝑟)‘(Base‘𝑟))
122, 3, 4, 4, 11cmpo 7284 . 2 class (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
131, 12wceq 1538 1 wff eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
Colors of variables: wff setvar class
This definition is referenced by:  evlval  21312  evl1fval  21501  mzpmfp  40574
  Copyright terms: Public domain W3C validator