![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
reldmevls | ⊢ Rel dom evalSub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls 22081 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
2 | 1 | reldmmpo 7550 | 1 ⊢ Rel dom evalSub |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 Vcvv 3463 ⦋csb 3892 {csn 4624 ↦ cmpt 5227 × cxp 5671 dom cdm 5673 ∘ ccom 5677 Rel wrel 5678 ‘cfv 6544 ℩crio 7369 (class class class)co 7414 ↑m cmap 8845 Basecbs 17206 ↾s cress 17235 ↑s cpws 17454 CRingccrg 20211 RingHom crh 20445 SubRingcsubrg 20545 algSccascl 21844 mVar cmvr 21896 mPoly cmpl 21897 evalSub ces 22079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-xp 5679 df-rel 5680 df-dm 5683 df-oprab 7418 df-mpo 7419 df-evls 22081 |
This theorem is referenced by: mpfrcl 22094 evlval 22104 |
Copyright terms: Public domain | W3C validator |