Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
reldmevls | ⊢ Rel dom evalSub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls 21380 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
2 | 1 | reldmmpo 7462 | 1 ⊢ Rel dom evalSub |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 Vcvv 3441 ⦋csb 3842 {csn 4572 ↦ cmpt 5172 × cxp 5612 dom cdm 5614 ∘ ccom 5618 Rel wrel 5619 ‘cfv 6473 ℩crio 7285 (class class class)co 7329 ↑m cmap 8678 Basecbs 17001 ↾s cress 17030 ↑s cpws 17246 CRingccrg 19871 RingHom crh 20043 SubRingcsubrg 20117 algSccascl 21157 mVar cmvr 21206 mPoly cmpl 21207 evalSub ces 21378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7333 df-mpo 7334 df-evls 21380 |
This theorem is referenced by: mpfrcl 21393 evlval 21403 |
Copyright terms: Public domain | W3C validator |