![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
reldmevls | ⊢ Rel dom evalSub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls 22125 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
2 | 1 | reldmmpo 7574 | 1 ⊢ Rel dom evalSub |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 Vcvv 3481 ⦋csb 3911 {csn 4634 ↦ cmpt 5234 × cxp 5691 dom cdm 5693 ∘ ccom 5697 Rel wrel 5698 ‘cfv 6569 ℩crio 7394 (class class class)co 7438 ↑m cmap 8874 Basecbs 17254 ↾s cress 17283 ↑s cpws 17502 CRingccrg 20261 RingHom crh 20495 SubRingcsubrg 20595 algSccascl 21899 mVar cmvr 21952 mPoly cmpl 21953 evalSub ces 22123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-dm 5703 df-oprab 7442 df-mpo 7443 df-evls 22125 |
This theorem is referenced by: mpfrcl 22136 evlval 22146 |
Copyright terms: Public domain | W3C validator |