| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version | ||
| Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmevls | ⊢ Rel dom evalSub |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-evls 22046 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
| 2 | 1 | reldmmpo 7549 | 1 ⊢ Rel dom evalSub |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 Vcvv 3463 ⦋csb 3879 {csn 4606 ↦ cmpt 5205 × cxp 5663 dom cdm 5665 ∘ ccom 5669 Rel wrel 5670 ‘cfv 6541 ℩crio 7369 (class class class)co 7413 ↑m cmap 8848 Basecbs 17229 ↾s cress 17252 ↑s cpws 17462 CRingccrg 20199 RingHom crh 20437 SubRingcsubrg 20537 algSccascl 21826 mVar cmvr 21879 mPoly cmpl 21880 evalSub ces 22044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-dm 5675 df-oprab 7417 df-mpo 7418 df-evls 22046 |
| This theorem is referenced by: mpfrcl 22057 evlval 22067 |
| Copyright terms: Public domain | W3C validator |