MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmevls Structured version   Visualization version   GIF version

Theorem reldmevls 21294
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Assertion
Ref Expression
reldmevls Rel dom evalSub

Proof of Theorem reldmevls
Dummy variables 𝑏 𝑓 𝑔 𝑖 𝑟 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-evls 21282 . 2 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))))
21reldmmpo 7408 1 Rel dom evalSub
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  Vcvv 3432  csb 3832  {csn 4561  cmpt 5157   × cxp 5587  dom cdm 5589  ccom 5593  Rel wrel 5594  cfv 6433  crio 7231  (class class class)co 7275  m cmap 8615  Basecbs 16912  s cress 16941  s cpws 17157  CRingccrg 19784   RingHom crh 19956  SubRingcsubrg 20020  algSccascl 21059   mVar cmvr 21108   mPoly cmpl 21109   evalSub ces 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-oprab 7279  df-mpo 7280  df-evls 21282
This theorem is referenced by:  mpfrcl  21295  evlval  21305
  Copyright terms: Public domain W3C validator