| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version | ||
| Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmevls | ⊢ Rel dom evalSub |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-evls 21987 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
| 2 | 1 | reldmmpo 7525 | 1 ⊢ Rel dom evalSub |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 Vcvv 3450 ⦋csb 3864 {csn 4591 ↦ cmpt 5190 × cxp 5638 dom cdm 5640 ∘ ccom 5644 Rel wrel 5645 ‘cfv 6513 ℩crio 7345 (class class class)co 7389 ↑m cmap 8801 Basecbs 17185 ↾s cress 17206 ↑s cpws 17415 CRingccrg 20149 RingHom crh 20384 SubRingcsubrg 20484 algSccascl 21767 mVar cmvr 21820 mPoly cmpl 21821 evalSub ces 21985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-dm 5650 df-oprab 7393 df-mpo 7394 df-evls 21987 |
| This theorem is referenced by: mpfrcl 21998 evlval 22008 |
| Copyright terms: Public domain | W3C validator |