MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmevls Structured version   Visualization version   GIF version

Theorem reldmevls 21991
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.)
Assertion
Ref Expression
reldmevls Rel dom evalSub

Proof of Theorem reldmevls
Dummy variables 𝑏 𝑓 𝑔 𝑖 𝑟 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-evls 21981 . 2 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))))
21reldmmpo 7523 1 Rel dom evalSub
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  Vcvv 3447  csb 3862  {csn 4589  cmpt 5188   × cxp 5636  dom cdm 5638  ccom 5642  Rel wrel 5643  cfv 6511  crio 7343  (class class class)co 7387  m cmap 8799  Basecbs 17179  s cress 17200  s cpws 17409  CRingccrg 20143   RingHom crh 20378  SubRingcsubrg 20478  algSccascl 21761   mVar cmvr 21814   mPoly cmpl 21815   evalSub ces 21979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648  df-oprab 7391  df-mpo 7392  df-evls 21981
This theorem is referenced by:  mpfrcl  21992  evlval  22002
  Copyright terms: Public domain W3C validator