| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version | ||
| Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmevls | ⊢ Rel dom evalSub |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-evls 22007 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom evalSub |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 Vcvv 3436 ⦋csb 3850 {csn 4576 ↦ cmpt 5172 × cxp 5614 dom cdm 5616 ∘ ccom 5620 Rel wrel 5621 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 ↑m cmap 8750 Basecbs 17117 ↾s cress 17138 ↑s cpws 17347 CRingccrg 20150 RingHom crh 20385 SubRingcsubrg 20482 algSccascl 21787 mVar cmvr 21840 mPoly cmpl 21841 evalSub ces 22005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 df-oprab 7350 df-mpo 7351 df-evls 22007 |
| This theorem is referenced by: mpfrcl 22018 evlval 22028 |
| Copyright terms: Public domain | W3C validator |