| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version | ||
| Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmevls | ⊢ Rel dom evalSub |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-evls 22010 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
| 2 | 1 | reldmmpo 7486 | 1 ⊢ Rel dom evalSub |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 Vcvv 3437 ⦋csb 3846 {csn 4575 ↦ cmpt 5174 × cxp 5617 dom cdm 5619 ∘ ccom 5623 Rel wrel 5624 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 ↑m cmap 8756 Basecbs 17122 ↾s cress 17143 ↑s cpws 17352 CRingccrg 20154 RingHom crh 20389 SubRingcsubrg 20486 algSccascl 21791 mVar cmvr 21844 mPoly cmpl 21845 evalSub ces 22008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7356 df-mpo 7357 df-evls 22010 |
| This theorem is referenced by: mpfrcl 22021 evlval 22031 |
| Copyright terms: Public domain | W3C validator |