Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
reldmevls | ⊢ Rel dom evalSub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls 21282 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
2 | 1 | reldmmpo 7408 | 1 ⊢ Rel dom evalSub |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 Vcvv 3432 ⦋csb 3832 {csn 4561 ↦ cmpt 5157 × cxp 5587 dom cdm 5589 ∘ ccom 5593 Rel wrel 5594 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 ↑m cmap 8615 Basecbs 16912 ↾s cress 16941 ↑s cpws 17157 CRingccrg 19784 RingHom crh 19956 SubRingcsubrg 20020 algSccascl 21059 mVar cmvr 21108 mPoly cmpl 21109 evalSub ces 21280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-oprab 7279 df-mpo 7280 df-evls 21282 |
This theorem is referenced by: mpfrcl 21295 evlval 21305 |
Copyright terms: Public domain | W3C validator |