| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version | ||
| Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| reldmevls | ⊢ Rel dom evalSub |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-evls 21981 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
| 2 | 1 | reldmmpo 7523 | 1 ⊢ Rel dom evalSub |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 Vcvv 3447 ⦋csb 3862 {csn 4589 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ∘ ccom 5642 Rel wrel 5643 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 ↑m cmap 8799 Basecbs 17179 ↾s cress 17200 ↑s cpws 17409 CRingccrg 20143 RingHom crh 20378 SubRingcsubrg 20478 algSccascl 21761 mVar cmvr 21814 mPoly cmpl 21815 evalSub ces 21979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 df-evls 21981 |
| This theorem is referenced by: mpfrcl 21992 evlval 22002 |
| Copyright terms: Public domain | W3C validator |