Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmevls | Structured version Visualization version GIF version |
Description: Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
Ref | Expression |
---|---|
reldmevls | ⊢ Rel dom evalSub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-evls 21192 | . 2 ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | |
2 | 1 | reldmmpo 7386 | 1 ⊢ Rel dom evalSub |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 Vcvv 3422 ⦋csb 3828 {csn 4558 ↦ cmpt 5153 × cxp 5578 dom cdm 5580 ∘ ccom 5584 Rel wrel 5585 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 ↾s cress 16867 ↑s cpws 17074 CRingccrg 19699 RingHom crh 19871 SubRingcsubrg 19935 algSccascl 20969 mVar cmvr 21018 mPoly cmpl 21019 evalSub ces 21190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-oprab 7259 df-mpo 7260 df-evls 21192 |
This theorem is referenced by: mpfrcl 21205 evlval 21215 |
Copyright terms: Public domain | W3C validator |