Step | Hyp | Ref
| Expression |
1 | | evlsval.q |
. . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
2 | | elex 3450 |
. . . . 5
⊢ (𝐼 ∈ 𝑍 → 𝐼 ∈ V) |
3 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
4 | 3 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆)) |
5 | 4 | csbeq1d 3836 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = ⦋(Base‘𝑆) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
6 | | fvex 6787 |
. . . . . . . . . 10
⊢
(Base‘𝑆)
∈ V |
7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (Base‘𝑆) ∈ V) |
8 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → 𝑠 = 𝑆) |
9 | 8 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (SubRing‘𝑠) = (SubRing‘𝑆)) |
10 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → 𝑖 = 𝐼) |
11 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑆 → (𝑠 ↾s 𝑟) = (𝑆 ↾s 𝑟)) |
12 | 11 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑠 ↾s 𝑟) = (𝑆 ↾s 𝑟)) |
13 | 10, 12 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑖 mPoly (𝑠 ↾s 𝑟)) = (𝐼 mPoly (𝑆 ↾s 𝑟))) |
14 | 13 | csbeq1d 3836 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
15 | | ovexd 7310 |
. . . . . . . . . . . 12
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝐼 mPoly (𝑆 ↾s 𝑟)) ∈ V) |
16 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟))) |
17 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → 𝑠 = 𝑆) |
18 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → 𝑏 = (Base‘𝑆)) |
19 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → 𝑖 = 𝐼) |
20 | 18, 19 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑏 ↑m 𝑖) = ((Base‘𝑆) ↑m 𝐼)) |
21 | 17, 20 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑠 ↑s (𝑏 ↑m 𝑖)) = (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))) |
22 | 16, 21 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖))) = ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))) |
23 | 16 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (algSc‘𝑤) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) |
24 | 23 | coeq2d 5771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑓 ∘ (algSc‘𝑤)) = (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟))))) |
25 | 20 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → ((𝑏 ↑m 𝑖) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {𝑥})) |
26 | 25 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))) |
27 | 24, 26 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → ((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ↔ (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})))) |
28 | 17 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑠 ↾s 𝑟) = (𝑆 ↾s 𝑟)) |
29 | 19, 28 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑖 mVar (𝑠 ↾s 𝑟)) = (𝐼 mVar (𝑆 ↾s 𝑟))) |
30 | 29 | coeq2d 5771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟)))) |
31 | 20 | mpteq1d 5169 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)) = (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))) |
32 | 19, 31 | mpteq12dv 5165 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))) |
33 | 30, 32 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → ((𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))) |
34 | 27, 33 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
35 | 22, 34 | riotaeqbidv 7235 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟)))) → (℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
36 | 35 | anassrs 468 |
. . . . . . . . . . . 12
⊢ ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) ∧ 𝑤 = (𝐼 mPoly (𝑆 ↾s 𝑟))) → (℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
37 | 15, 36 | csbied 3870 |
. . . . . . . . . . 11
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
38 | 14, 37 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
39 | 9, 38 | mpteq12dv 5165 |
. . . . . . . . 9
⊢ (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
40 | 7, 39 | csbied 3870 |
. . . . . . . 8
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑆) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
41 | 5, 40 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
42 | | df-evls 21282 |
. . . . . . 7
⊢ evalSub
= (𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
43 | | fvex 6787 |
. . . . . . . 8
⊢
(SubRing‘𝑆)
∈ V |
44 | 43 | mptex 7099 |
. . . . . . 7
⊢ (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) ∈ V |
45 | 41, 42, 44 | ovmpoa 7428 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (𝐼 evalSub 𝑆) = (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
46 | 45 | fveq1d 6776 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → ((𝐼 evalSub 𝑆)‘𝑅) = ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅)) |
47 | 2, 46 | sylan 580 |
. . . 4
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) → ((𝐼 evalSub 𝑆)‘𝑅) = ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅)) |
48 | 1, 47 | eqtrid 2790 |
. . 3
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) → 𝑄 = ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅)) |
49 | 48 | 3adant3 1131 |
. 2
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅)) |
50 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑆 ↾s 𝑟) = (𝑆 ↾s 𝑅)) |
51 | 50 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝐼 mPoly (𝑆 ↾s 𝑟)) = (𝐼 mPoly (𝑆 ↾s 𝑅))) |
52 | 51 | oveq1d 7290 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))) =
((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))) |
53 | 51 | fveq2d 6778 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
54 | 53 | coeq2d 5771 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))))) |
55 | | mpteq1 5167 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))) |
56 | 54, 55 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ↔ (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})))) |
57 | 50 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝐼 mVar (𝑆 ↾s 𝑟)) = (𝐼 mVar (𝑆 ↾s 𝑅))) |
58 | 57 | coeq2d 5771 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅)))) |
59 | 58 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))) |
60 | 56, 59 | anbi12d 631 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
61 | 52, 60 | riotaeqbidv 7235 |
. . . . 5
⊢ (𝑟 = 𝑅 → (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
62 | | eqid 2738 |
. . . . 5
⊢ (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
63 | | riotaex 7236 |
. . . . 5
⊢
(℩𝑓
∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))) ∈ V |
64 | 61, 62, 63 | fvmpt 6875 |
. . . 4
⊢ (𝑅 ∈ (SubRing‘𝑆) → ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
65 | | evlsval.w |
. . . . . . . . 9
⊢ 𝑊 = (𝐼 mPoly 𝑈) |
66 | | evlsval.u |
. . . . . . . . . 10
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
67 | 66 | oveq2i 7286 |
. . . . . . . . 9
⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly (𝑆 ↾s 𝑅)) |
68 | 65, 67 | eqtri 2766 |
. . . . . . . 8
⊢ 𝑊 = (𝐼 mPoly (𝑆 ↾s 𝑅)) |
69 | | evlsval.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) |
70 | | evlsval.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑆) |
71 | 70 | oveq1i 7285 |
. . . . . . . . . 10
⊢ (𝐵 ↑m 𝐼) = ((Base‘𝑆) ↑m 𝐼) |
72 | 71 | oveq2i 7286 |
. . . . . . . . 9
⊢ (𝑆 ↑s
(𝐵 ↑m 𝐼)) = (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)) |
73 | 69, 72 | eqtri 2766 |
. . . . . . . 8
⊢ 𝑇 = (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)) |
74 | 68, 73 | oveq12i 7287 |
. . . . . . 7
⊢ (𝑊 RingHom 𝑇) = ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼))) |
75 | 74 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑊 RingHom 𝑇) = ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))) |
76 | | evlsval.a |
. . . . . . . . . . 11
⊢ 𝐴 = (algSc‘𝑊) |
77 | 68 | fveq2i 6777 |
. . . . . . . . . . 11
⊢
(algSc‘𝑊) =
(algSc‘(𝐼 mPoly
(𝑆 ↾s
𝑅))) |
78 | 76, 77 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝐴 = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅))) |
79 | 78 | coeq2i 5769 |
. . . . . . . . 9
⊢ (𝑓 ∘ 𝐴) = (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) |
80 | | evlsval.x |
. . . . . . . . . 10
⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) |
81 | 71 | xpeq1i 5615 |
. . . . . . . . . . 11
⊢ ((𝐵 ↑m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {𝑥}) |
82 | 81 | mpteq2i 5179 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) |
83 | 80, 82 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) |
84 | 79, 83 | eqeq12i 2756 |
. . . . . . . 8
⊢ ((𝑓 ∘ 𝐴) = 𝑋 ↔ (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))) |
85 | | evlsval.v |
. . . . . . . . . . 11
⊢ 𝑉 = (𝐼 mVar 𝑈) |
86 | 66 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝐼 mVar 𝑈) = (𝐼 mVar (𝑆 ↾s 𝑅)) |
87 | 85, 86 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝑉 = (𝐼 mVar (𝑆 ↾s 𝑅)) |
88 | 87 | coeq2i 5769 |
. . . . . . . . 9
⊢ (𝑓 ∘ 𝑉) = (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) |
89 | | evlsval.y |
. . . . . . . . . 10
⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) |
90 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑔‘𝑥) = (𝑔‘𝑥) |
91 | 71, 90 | mpteq12i 5180 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) = (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)) |
92 | 91 | mpteq2i 5179 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))) |
93 | 89, 92 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))) |
94 | 88, 93 | eqeq12i 2756 |
. . . . . . . 8
⊢ ((𝑓 ∘ 𝑉) = 𝑌 ↔ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))) |
95 | 84, 94 | anbi12i 627 |
. . . . . . 7
⊢ (((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))) |
96 | 95 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
97 | 75, 96 | riotaeqbidv 7235 |
. . . . 5
⊢ (⊤
→ (℩𝑓
∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌)) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
98 | 97 | mptru 1546 |
. . . 4
⊢
(℩𝑓
∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌)) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑅)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑅)))) = (𝑥 ∈ 𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑅))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))) |
99 | 64, 98 | eqtr4di 2796 |
. . 3
⊢ (𝑅 ∈ (SubRing‘𝑆) → ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅) = (℩𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌))) |
100 | 99 | 3ad2ant3 1134 |
. 2
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑟 ∈ (SubRing‘𝑆) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 ↾s 𝑟)) RingHom (𝑆 ↑s
((Base‘𝑆)
↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝑟)))) = (𝑥 ∈ 𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔‘𝑥))))))‘𝑅) = (℩𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌))) |
101 | 49, 100 | eqtrd 2778 |
1
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌))) |