MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval Structured version   Visualization version   GIF version

Theorem evlsval 21649
Description: Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsval.q 𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)
evlsval.w π‘Š = (𝐼 mPoly π‘ˆ)
evlsval.v 𝑉 = (𝐼 mVar π‘ˆ)
evlsval.u π‘ˆ = (𝑆 β†Ύs 𝑅)
evlsval.t 𝑇 = (𝑆 ↑s (𝐡 ↑m 𝐼))
evlsval.b 𝐡 = (Baseβ€˜π‘†)
evlsval.a 𝐴 = (algScβ€˜π‘Š)
evlsval.x 𝑋 = (π‘₯ ∈ 𝑅 ↦ ((𝐡 ↑m 𝐼) Γ— {π‘₯}))
evlsval.y π‘Œ = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))
Assertion
Ref Expression
evlsval ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 = (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)))
Distinct variable groups:   𝑓,𝐼,𝑔,π‘₯   𝑅,𝑓,π‘₯   𝑆,𝑓,𝑔,π‘₯   𝑇,𝑓   𝑓,π‘Š
Allowed substitution hints:   𝐴(π‘₯,𝑓,𝑔)   𝐡(π‘₯,𝑓,𝑔)   𝑄(π‘₯,𝑓,𝑔)   𝑅(𝑔)   𝑇(π‘₯,𝑔)   π‘ˆ(π‘₯,𝑓,𝑔)   𝑉(π‘₯,𝑓,𝑔)   π‘Š(π‘₯,𝑔)   𝑋(π‘₯,𝑓,𝑔)   π‘Œ(π‘₯,𝑓,𝑔)   𝑍(π‘₯,𝑓,𝑔)

Proof of Theorem evlsval
Dummy variables 𝑏 𝑖 π‘Ÿ 𝑠 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)β€˜π‘…)
2 elex 3493 . . . . 5 (𝐼 ∈ 𝑍 β†’ 𝐼 ∈ V)
3 fveq2 6892 . . . . . . . . . 10 (𝑠 = 𝑆 β†’ (Baseβ€˜π‘ ) = (Baseβ€˜π‘†))
43adantl 483 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) β†’ (Baseβ€˜π‘ ) = (Baseβ€˜π‘†))
54csbeq1d 3898 . . . . . . . 8 ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) β†’ ⦋(Baseβ€˜π‘ ) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))) = ⦋(Baseβ€˜π‘†) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))))
6 fvex 6905 . . . . . . . . . 10 (Baseβ€˜π‘†) ∈ V
76a1i 11 . . . . . . . . 9 ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) β†’ (Baseβ€˜π‘†) ∈ V)
8 simplr 768 . . . . . . . . . . 11 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ 𝑠 = 𝑆)
98fveq2d 6896 . . . . . . . . . 10 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ (SubRingβ€˜π‘ ) = (SubRingβ€˜π‘†))
10 simpll 766 . . . . . . . . . . . . 13 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ 𝑖 = 𝐼)
11 oveq1 7416 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 β†’ (𝑠 β†Ύs π‘Ÿ) = (𝑆 β†Ύs π‘Ÿ))
1211ad2antlr 726 . . . . . . . . . . . . 13 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ (𝑠 β†Ύs π‘Ÿ) = (𝑆 β†Ύs π‘Ÿ))
1310, 12oveq12d 7427 . . . . . . . . . . . 12 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ (𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))
1413csbeq1d 3898 . . . . . . . . . . 11 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))))) = ⦋(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))))))
15 ovexd 7444 . . . . . . . . . . . 12 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) ∈ V)
16 simprr 772 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))
17 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ 𝑠 = 𝑆)
18 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ 𝑏 = (Baseβ€˜π‘†))
19 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ 𝑖 = 𝐼)
2018, 19oveq12d 7427 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑏 ↑m 𝑖) = ((Baseβ€˜π‘†) ↑m 𝐼))
2117, 20oveq12d 7427 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑠 ↑s (𝑏 ↑m 𝑖)) = (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))
2216, 21oveq12d 7427 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖))) = ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))))
2316fveq2d 6896 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (algScβ€˜π‘€) = (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ))))
2423coeq2d 5863 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑓 ∘ (algScβ€˜π‘€)) = (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))))
2520xpeq1d 5706 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ ((𝑏 ↑m 𝑖) Γ— {π‘₯}) = (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯}))
2625mpteq2dv 5251 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})))
2724, 26eqeq12d 2749 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ ((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ↔ (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯}))))
2817oveq1d 7424 . . . . . . . . . . . . . . . . . 18 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑠 β†Ύs π‘Ÿ) = (𝑆 β†Ύs π‘Ÿ))
2919, 28oveq12d 7427 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ)) = (𝐼 mVar (𝑆 β†Ύs π‘Ÿ)))
3029coeq2d 5863 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))))
3120mpteq1d 5244 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)) = (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))
3219, 31mpteq12dv 5240 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))
3330, 32eqeq12d 2749 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ ((𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))
3427, 33anbi12d 632 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))) ↔ ((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
3522, 34riotaeqbidv 7368 . . . . . . . . . . . . 13 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ (𝑏 = (Baseβ€˜π‘†) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) β†’ (℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
3635anassrs 469 . . . . . . . . . . . 12 ((((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) ∧ 𝑀 = (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ))) β†’ (℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
3715, 36csbied 3932 . . . . . . . . . . 11 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ ⦋(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
3814, 37eqtrd 2773 . . . . . . . . . 10 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
399, 38mpteq12dv 5240 . . . . . . . . 9 (((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) ∧ 𝑏 = (Baseβ€˜π‘†)) β†’ (π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))) = (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))))
407, 39csbied 3932 . . . . . . . 8 ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) β†’ ⦋(Baseβ€˜π‘†) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))) = (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))))
415, 40eqtrd 2773 . . . . . . 7 ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) β†’ ⦋(Baseβ€˜π‘ ) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))) = (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))))
42 df-evls 21635 . . . . . . 7 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Baseβ€˜π‘ ) / π‘β¦Œ(π‘Ÿ ∈ (SubRingβ€˜π‘ ) ↦ ⦋(𝑖 mPoly (𝑠 β†Ύs π‘Ÿ)) / π‘€β¦Œ(℩𝑓 ∈ (𝑀 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algScβ€˜π‘€)) = (π‘₯ ∈ π‘Ÿ ↦ ((𝑏 ↑m 𝑖) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (π‘”β€˜π‘₯)))))))
43 fvex 6905 . . . . . . . 8 (SubRingβ€˜π‘†) ∈ V
4443mptex 7225 . . . . . . 7 (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))) ∈ V
4541, 42, 44ovmpoa 7563 . . . . . 6 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) β†’ (𝐼 evalSub 𝑆) = (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))))
4645fveq1d 6894 . . . . 5 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) β†’ ((𝐼 evalSub 𝑆)β€˜π‘…) = ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…))
472, 46sylan 581 . . . 4 ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) β†’ ((𝐼 evalSub 𝑆)β€˜π‘…) = ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…))
481, 47eqtrid 2785 . . 3 ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) β†’ 𝑄 = ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…))
49483adant3 1133 . 2 ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 = ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…))
50 oveq2 7417 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (𝑆 β†Ύs π‘Ÿ) = (𝑆 β†Ύs 𝑅))
5150oveq2d 7425 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) = (𝐼 mPoly (𝑆 β†Ύs 𝑅)))
5251oveq1d 7424 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))) = ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))))
5351fveq2d 6896 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ))) = (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅))))
5453coeq2d 5863 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))))
55 mpteq1 5242 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})))
5654, 55eqeq12d 2749 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ↔ (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯}))))
5750oveq2d 7425 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ)) = (𝐼 mVar (𝑆 β†Ύs 𝑅)))
5857coeq2d 5863 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))))
5958eqeq1d 2735 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))
6056, 59anbi12d 632 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))) ↔ ((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
6152, 60riotaeqbidv 7368 . . . . 5 (π‘Ÿ = 𝑅 β†’ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
62 eqid 2733 . . . . 5 (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))) = (π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
63 riotaex 7369 . . . . 5 (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))) ∈ V
6461, 62, 63fvmpt 6999 . . . 4 (𝑅 ∈ (SubRingβ€˜π‘†) β†’ ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
65 evlsval.w . . . . . . . . 9 π‘Š = (𝐼 mPoly π‘ˆ)
66 evlsval.u . . . . . . . . . 10 π‘ˆ = (𝑆 β†Ύs 𝑅)
6766oveq2i 7420 . . . . . . . . 9 (𝐼 mPoly π‘ˆ) = (𝐼 mPoly (𝑆 β†Ύs 𝑅))
6865, 67eqtri 2761 . . . . . . . 8 π‘Š = (𝐼 mPoly (𝑆 β†Ύs 𝑅))
69 evlsval.t . . . . . . . . 9 𝑇 = (𝑆 ↑s (𝐡 ↑m 𝐼))
70 evlsval.b . . . . . . . . . . 11 𝐡 = (Baseβ€˜π‘†)
7170oveq1i 7419 . . . . . . . . . 10 (𝐡 ↑m 𝐼) = ((Baseβ€˜π‘†) ↑m 𝐼)
7271oveq2i 7420 . . . . . . . . 9 (𝑆 ↑s (𝐡 ↑m 𝐼)) = (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))
7369, 72eqtri 2761 . . . . . . . 8 𝑇 = (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))
7468, 73oveq12i 7421 . . . . . . 7 (π‘Š RingHom 𝑇) = ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))
7574a1i 11 . . . . . 6 (⊀ β†’ (π‘Š RingHom 𝑇) = ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼))))
76 evlsval.a . . . . . . . . . . 11 𝐴 = (algScβ€˜π‘Š)
7768fveq2i 6895 . . . . . . . . . . 11 (algScβ€˜π‘Š) = (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))
7876, 77eqtri 2761 . . . . . . . . . 10 𝐴 = (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))
7978coeq2i 5861 . . . . . . . . 9 (𝑓 ∘ 𝐴) = (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅))))
80 evlsval.x . . . . . . . . . 10 𝑋 = (π‘₯ ∈ 𝑅 ↦ ((𝐡 ↑m 𝐼) Γ— {π‘₯}))
8171xpeq1i 5703 . . . . . . . . . . 11 ((𝐡 ↑m 𝐼) Γ— {π‘₯}) = (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})
8281mpteq2i 5254 . . . . . . . . . 10 (π‘₯ ∈ 𝑅 ↦ ((𝐡 ↑m 𝐼) Γ— {π‘₯})) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯}))
8380, 82eqtri 2761 . . . . . . . . 9 𝑋 = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯}))
8479, 83eqeq12i 2751 . . . . . . . 8 ((𝑓 ∘ 𝐴) = 𝑋 ↔ (𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})))
85 evlsval.v . . . . . . . . . . 11 𝑉 = (𝐼 mVar π‘ˆ)
8666oveq2i 7420 . . . . . . . . . . 11 (𝐼 mVar π‘ˆ) = (𝐼 mVar (𝑆 β†Ύs 𝑅))
8785, 86eqtri 2761 . . . . . . . . . 10 𝑉 = (𝐼 mVar (𝑆 β†Ύs 𝑅))
8887coeq2i 5861 . . . . . . . . 9 (𝑓 ∘ 𝑉) = (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅)))
89 evlsval.y . . . . . . . . . 10 π‘Œ = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))
90 eqid 2733 . . . . . . . . . . . 12 (π‘”β€˜π‘₯) = (π‘”β€˜π‘₯)
9171, 90mpteq12i 5255 . . . . . . . . . . 11 (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘₯)) = (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))
9291mpteq2i 5254 . . . . . . . . . 10 (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ (𝐡 ↑m 𝐼) ↦ (π‘”β€˜π‘₯))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))
9389, 92eqtri 2761 . . . . . . . . 9 π‘Œ = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))
9488, 93eqeq12i 2751 . . . . . . . 8 ((𝑓 ∘ 𝑉) = π‘Œ ↔ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))
9584, 94anbi12i 628 . . . . . . 7 (((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ) ↔ ((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))
9695a1i 11 . . . . . 6 (⊀ β†’ (((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ) ↔ ((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
9775, 96riotaeqbidv 7368 . . . . 5 (⊀ β†’ (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))
9897mptru 1549 . . . 4 (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)) = (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs 𝑅)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs 𝑅)))) = (π‘₯ ∈ 𝑅 ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs 𝑅))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯)))))
9964, 98eqtr4di 2791 . . 3 (𝑅 ∈ (SubRingβ€˜π‘†) β†’ ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…) = (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)))
100993ad2ant3 1136 . 2 ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ ((π‘Ÿ ∈ (SubRingβ€˜π‘†) ↦ (℩𝑓 ∈ ((𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)) RingHom (𝑆 ↑s ((Baseβ€˜π‘†) ↑m 𝐼)))((𝑓 ∘ (algScβ€˜(𝐼 mPoly (𝑆 β†Ύs π‘Ÿ)))) = (π‘₯ ∈ π‘Ÿ ↦ (((Baseβ€˜π‘†) ↑m 𝐼) Γ— {π‘₯})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 β†Ύs π‘Ÿ))) = (π‘₯ ∈ 𝐼 ↦ (𝑔 ∈ ((Baseβ€˜π‘†) ↑m 𝐼) ↦ (π‘”β€˜π‘₯))))))β€˜π‘…) = (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)))
10149, 100eqtrd 2773 1 ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 = (℩𝑓 ∈ (π‘Š RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βŠ€wtru 1543   ∈ wcel 2107  Vcvv 3475  β¦‹csb 3894  {csn 4629   ↦ cmpt 5232   Γ— cxp 5675   ∘ ccom 5681  β€˜cfv 6544  β„©crio 7364  (class class class)co 7409   ↑m cmap 8820  Basecbs 17144   β†Ύs cress 17173   ↑s cpws 17392  CRingccrg 20057   RingHom crh 20248  SubRingcsubrg 20315  algSccascl 21407   mVar cmvr 21458   mPoly cmpl 21459   evalSub ces 21633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-evls 21635
This theorem is referenced by:  evlsval2  21650  evlsval3  41131
  Copyright terms: Public domain W3C validator