Step | Hyp | Ref
| Expression |
1 | | ne0i 4268 |
. . 3
⊢ (𝑋 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) → ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅) |
2 | | mpfrcl.q |
. . 3
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
3 | 1, 2 | eleq2s 2857 |
. 2
⊢ (𝑋 ∈ 𝑄 → ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅) |
4 | | rneq 5845 |
. . . 4
⊢ (((𝐼 evalSub 𝑆)‘𝑅) = ∅ → ran ((𝐼 evalSub 𝑆)‘𝑅) = ran ∅) |
5 | | rn0 5835 |
. . . 4
⊢ ran
∅ = ∅ |
6 | 4, 5 | eqtrdi 2794 |
. . 3
⊢ (((𝐼 evalSub 𝑆)‘𝑅) = ∅ → ran ((𝐼 evalSub 𝑆)‘𝑅) = ∅) |
7 | 6 | necon3i 2976 |
. 2
⊢ (ran
((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅) |
8 | | fveq1 6773 |
. . . . . . 7
⊢ ((𝐼 evalSub 𝑆) = ∅ → ((𝐼 evalSub 𝑆)‘𝑅) = (∅‘𝑅)) |
9 | | 0fv 6813 |
. . . . . . 7
⊢
(∅‘𝑅) =
∅ |
10 | 8, 9 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝐼 evalSub 𝑆) = ∅ → ((𝐼 evalSub 𝑆)‘𝑅) = ∅) |
11 | 10 | necon3i 2976 |
. . . . 5
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 evalSub 𝑆) ≠ ∅) |
12 | | reldmevls 21294 |
. . . . . . . 8
⊢ Rel dom
evalSub |
13 | 12 | ovprc1 7314 |
. . . . . . 7
⊢ (¬
𝐼 ∈ V → (𝐼 evalSub 𝑆) = ∅) |
14 | 13 | necon1ai 2971 |
. . . . . 6
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ → 𝐼 ∈ V) |
15 | | n0 4280 |
. . . . . . 7
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝐼 evalSub 𝑆)) |
16 | | df-evls 21282 |
. . . . . . . . . 10
⊢ evalSub
= (𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
17 | 16 | elmpocl2 7513 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝐼 evalSub 𝑆) → 𝑆 ∈ CRing) |
18 | 17 | a1d 25 |
. . . . . . . 8
⊢ (𝑎 ∈ (𝐼 evalSub 𝑆) → (𝐼 ∈ V → 𝑆 ∈ CRing)) |
19 | 18 | exlimiv 1933 |
. . . . . . 7
⊢
(∃𝑎 𝑎 ∈ (𝐼 evalSub 𝑆) → (𝐼 ∈ V → 𝑆 ∈ CRing)) |
20 | 15, 19 | sylbi 216 |
. . . . . 6
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ → (𝐼 ∈ V → 𝑆 ∈ CRing)) |
21 | 14, 20 | jcai 517 |
. . . . 5
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing)) |
22 | 11, 21 | syl 17 |
. . . 4
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing)) |
23 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑠)
∈ V |
24 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(SubRing‘𝑠) |
25 | | nfcsb1v 3857 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) |
26 | 24, 25 | nfmpt 5181 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
27 | | csbeq1a 3846 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (Base‘𝑠) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
28 | 27 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (Base‘𝑠) → (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
29 | 23, 26, 28 | csbief 3867 |
. . . . . . . . . . . 12
⊢
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
30 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑆 → (SubRing‘𝑠) = (SubRing‘𝑆)) |
31 | 30 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (SubRing‘𝑠) = (SubRing‘𝑆)) |
32 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
33 | 32 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆)) |
34 | 33 | csbeq1d 3836 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑆) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
35 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) |
36 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 𝑆 → (𝑠 ↾s 𝑟) = (𝑆 ↾s 𝑟)) |
37 | 35, 36 | oveqan12d 7294 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑖 mPoly (𝑠 ↾s 𝑟)) = (𝐼 mPoly (𝑆 ↾s 𝑟))) |
38 | 37 | csbeq1d 3836 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
39 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) |
40 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝐼 → (𝑏 ↑m 𝑖) = (𝑏 ↑m 𝐼)) |
41 | 39, 40 | oveqan12rd 7295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑠 ↑s (𝑏 ↑m 𝑖)) = (𝑆 ↑s (𝑏 ↑m 𝐼))) |
42 | 41 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖))) = (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))) |
43 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑏 ↑m 𝑖) = (𝑏 ↑m 𝐼)) |
44 | 43 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ((𝑏 ↑m 𝑖) × {𝑥}) = ((𝑏 ↑m 𝐼) × {𝑥})) |
45 | 44 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥}))) |
46 | 45 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ↔ (𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})))) |
47 | 35, 36 | oveqan12d 7294 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑖 mVar (𝑠 ↾s 𝑟)) = (𝐼 mVar (𝑆 ↾s 𝑟))) |
48 | 47 | coeq2d 5771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟)))) |
49 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → 𝑖 = 𝐼) |
50 | 43 | mpteq1d 5169 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)) = (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))) |
51 | 49, 50 | mpteq12dv 5165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))) |
52 | 48, 51 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ((𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))) |
53 | 46, 52 | anbi12d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))) ↔ ((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
54 | 42, 53 | riotaeqbidv 7235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
55 | 54 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
56 | 38, 55 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
57 | 56 | csbeq2dv 3839 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑆) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
58 | 34, 57 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
59 | 31, 58 | mpteq12dv 5165 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
60 | 29, 59 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
61 | | fvex 6787 |
. . . . . . . . . . . 12
⊢
(SubRing‘𝑆)
∈ V |
62 | 61 | mptex 7099 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ (SubRing‘𝑆) ↦
⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) ∈ V |
63 | 60, 16, 62 | ovmpoa 7428 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (𝐼 evalSub 𝑆) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
64 | 63 | dmeqd 5814 |
. . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → dom (𝐼 evalSub 𝑆) = dom (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
65 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑟 ∈ (SubRing‘𝑆) ↦
⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
66 | 65 | dmmptss 6144 |
. . . . . . . . 9
⊢ dom
(𝑟 ∈
(SubRing‘𝑆) ↦
⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) ⊆ (SubRing‘𝑆) |
67 | 64, 66 | eqsstrdi 3975 |
. . . . . . . 8
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → dom (𝐼 evalSub 𝑆) ⊆ (SubRing‘𝑆)) |
68 | 67 | ssneld 3923 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (¬
𝑅 ∈
(SubRing‘𝑆) →
¬ 𝑅 ∈ dom (𝐼 evalSub 𝑆))) |
69 | | ndmfv 6804 |
. . . . . . 7
⊢ (¬
𝑅 ∈ dom (𝐼 evalSub 𝑆) → ((𝐼 evalSub 𝑆)‘𝑅) = ∅) |
70 | 68, 69 | syl6 35 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (¬
𝑅 ∈
(SubRing‘𝑆) →
((𝐼 evalSub 𝑆)‘𝑅) = ∅)) |
71 | 70 | necon1ad 2960 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → 𝑅 ∈ (SubRing‘𝑆))) |
72 | 71 | com12 32 |
. . . 4
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → 𝑅 ∈ (SubRing‘𝑆))) |
73 | 22, 72 | jcai 517 |
. . 3
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) ∧ 𝑅 ∈ (SubRing‘𝑆))) |
74 | | df-3an 1088 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ↔ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) ∧ 𝑅 ∈ (SubRing‘𝑆))) |
75 | 73, 74 | sylibr 233 |
. 2
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
76 | 3, 7, 75 | 3syl 18 |
1
⊢ (𝑋 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |