| Step | Hyp | Ref
| Expression |
| 1 | | ne0i 4341 |
. . 3
⊢ (𝑋 ∈ ran ((𝐼 evalSub 𝑆)‘𝑅) → ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅) |
| 2 | | mpfrcl.q |
. . 3
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) |
| 3 | 1, 2 | eleq2s 2859 |
. 2
⊢ (𝑋 ∈ 𝑄 → ran ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅) |
| 4 | | rneq 5947 |
. . . 4
⊢ (((𝐼 evalSub 𝑆)‘𝑅) = ∅ → ran ((𝐼 evalSub 𝑆)‘𝑅) = ran ∅) |
| 5 | | rn0 5936 |
. . . 4
⊢ ran
∅ = ∅ |
| 6 | 4, 5 | eqtrdi 2793 |
. . 3
⊢ (((𝐼 evalSub 𝑆)‘𝑅) = ∅ → ran ((𝐼 evalSub 𝑆)‘𝑅) = ∅) |
| 7 | 6 | necon3i 2973 |
. 2
⊢ (ran
((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅) |
| 8 | | fveq1 6905 |
. . . . . . 7
⊢ ((𝐼 evalSub 𝑆) = ∅ → ((𝐼 evalSub 𝑆)‘𝑅) = (∅‘𝑅)) |
| 9 | | 0fv 6950 |
. . . . . . 7
⊢
(∅‘𝑅) =
∅ |
| 10 | 8, 9 | eqtrdi 2793 |
. . . . . 6
⊢ ((𝐼 evalSub 𝑆) = ∅ → ((𝐼 evalSub 𝑆)‘𝑅) = ∅) |
| 11 | 10 | necon3i 2973 |
. . . . 5
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 evalSub 𝑆) ≠ ∅) |
| 12 | | reldmevls 22108 |
. . . . . . . 8
⊢ Rel dom
evalSub |
| 13 | 12 | ovprc1 7470 |
. . . . . . 7
⊢ (¬
𝐼 ∈ V → (𝐼 evalSub 𝑆) = ∅) |
| 14 | 13 | necon1ai 2968 |
. . . . . 6
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ → 𝐼 ∈ V) |
| 15 | | n0 4353 |
. . . . . . 7
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝐼 evalSub 𝑆)) |
| 16 | | df-evls 22098 |
. . . . . . . . . 10
⊢ evalSub
= (𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
| 17 | 16 | elmpocl2 7676 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝐼 evalSub 𝑆) → 𝑆 ∈ CRing) |
| 18 | 17 | a1d 25 |
. . . . . . . 8
⊢ (𝑎 ∈ (𝐼 evalSub 𝑆) → (𝐼 ∈ V → 𝑆 ∈ CRing)) |
| 19 | 18 | exlimiv 1930 |
. . . . . . 7
⊢
(∃𝑎 𝑎 ∈ (𝐼 evalSub 𝑆) → (𝐼 ∈ V → 𝑆 ∈ CRing)) |
| 20 | 15, 19 | sylbi 217 |
. . . . . 6
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ → (𝐼 ∈ V → 𝑆 ∈ CRing)) |
| 21 | 14, 20 | jcai 516 |
. . . . 5
⊢ ((𝐼 evalSub 𝑆) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing)) |
| 22 | 11, 21 | syl 17 |
. . . 4
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing)) |
| 23 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑠)
∈ V |
| 24 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(SubRing‘𝑠) |
| 25 | | nfcsb1v 3923 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) |
| 26 | 24, 25 | nfmpt 5249 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 27 | | csbeq1a 3913 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (Base‘𝑠) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 28 | 27 | mpteq2dv 5244 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (Base‘𝑠) → (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
| 29 | 23, 26, 28 | csbief 3933 |
. . . . . . . . . . . 12
⊢
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 30 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑆 → (SubRing‘𝑠) = (SubRing‘𝑆)) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (SubRing‘𝑠) = (SubRing‘𝑆)) |
| 32 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆)) |
| 34 | 33 | csbeq1d 3903 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑆) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 35 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝐼 → 𝑖 = 𝐼) |
| 36 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 = 𝑆 → (𝑠 ↾s 𝑟) = (𝑆 ↾s 𝑟)) |
| 37 | 35, 36 | oveqan12d 7450 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑖 mPoly (𝑠 ↾s 𝑟)) = (𝐼 mPoly (𝑆 ↾s 𝑟))) |
| 38 | 37 | csbeq1d 3903 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) |
| 39 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) |
| 40 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝐼 → (𝑏 ↑m 𝑖) = (𝑏 ↑m 𝐼)) |
| 41 | 39, 40 | oveqan12rd 7451 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑠 ↑s (𝑏 ↑m 𝑖)) = (𝑆 ↑s (𝑏 ↑m 𝐼))) |
| 42 | 41 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖))) = (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))) |
| 43 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑏 ↑m 𝑖) = (𝑏 ↑m 𝐼)) |
| 44 | 43 | xpeq1d 5714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ((𝑏 ↑m 𝑖) × {𝑥}) = ((𝑏 ↑m 𝐼) × {𝑥})) |
| 45 | 44 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥}))) |
| 46 | 45 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ↔ (𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})))) |
| 47 | 35, 36 | oveqan12d 7450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑖 mVar (𝑠 ↾s 𝑟)) = (𝐼 mVar (𝑆 ↾s 𝑟))) |
| 48 | 47 | coeq2d 5873 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟)))) |
| 49 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → 𝑖 = 𝐼) |
| 50 | 43 | mpteq1d 5237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)) = (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))) |
| 51 | 49, 50 | mpteq12dv 5233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))) |
| 52 | 48, 51 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ((𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))) |
| 53 | 46, 52 | anbi12d 632 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))) ↔ ((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 54 | 42, 53 | riotaeqbidv 7391 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = (℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 55 | 54 | csbeq2dv 3906 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 56 | 38, 55 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 57 | 56 | csbeq2dv 3906 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑆) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 58 | 34, 57 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))) = ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 59 | 31, 58 | mpteq12dv 5233 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → (𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
| 60 | 29, 59 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ ((𝑖 = 𝐼 ∧ 𝑠 = 𝑆) → ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
| 61 | | fvex 6919 |
. . . . . . . . . . . 12
⊢
(SubRing‘𝑆)
∈ V |
| 62 | 61 | mptex 7243 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ (SubRing‘𝑆) ↦
⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) ∈ V |
| 63 | 60, 16, 62 | ovmpoa 7588 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (𝐼 evalSub 𝑆) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
| 64 | 63 | dmeqd 5916 |
. . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → dom (𝐼 evalSub 𝑆) = dom (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥))))))) |
| 65 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑟 ∈ (SubRing‘𝑆) ↦
⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ ⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
| 66 | 65 | dmmptss 6261 |
. . . . . . . . 9
⊢ dom
(𝑟 ∈
(SubRing‘𝑆) ↦
⦋(Base‘𝑆) / 𝑏⦌⦋(𝐼 mPoly (𝑆 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑆 ↑s (𝑏 ↑m 𝐼)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆 ↾s 𝑟))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝑏 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) ⊆ (SubRing‘𝑆) |
| 67 | 64, 66 | eqsstrdi 4028 |
. . . . . . . 8
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → dom (𝐼 evalSub 𝑆) ⊆ (SubRing‘𝑆)) |
| 68 | 67 | ssneld 3985 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (¬
𝑅 ∈
(SubRing‘𝑆) →
¬ 𝑅 ∈ dom (𝐼 evalSub 𝑆))) |
| 69 | | ndmfv 6941 |
. . . . . . 7
⊢ (¬
𝑅 ∈ dom (𝐼 evalSub 𝑆) → ((𝐼 evalSub 𝑆)‘𝑅) = ∅) |
| 70 | 68, 69 | syl6 35 |
. . . . . 6
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (¬
𝑅 ∈
(SubRing‘𝑆) →
((𝐼 evalSub 𝑆)‘𝑅) = ∅)) |
| 71 | 70 | necon1ad 2957 |
. . . . 5
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → 𝑅 ∈ (SubRing‘𝑆))) |
| 72 | 71 | com12 32 |
. . . 4
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → 𝑅 ∈ (SubRing‘𝑆))) |
| 73 | 22, 72 | jcai 516 |
. . 3
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 74 | | df-3an 1089 |
. . 3
⊢ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ↔ ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 75 | 73, 74 | sylibr 234 |
. 2
⊢ (((𝐼 evalSub 𝑆)‘𝑅) ≠ ∅ → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |
| 76 | 3, 7, 75 | 3syl 18 |
1
⊢ (𝑋 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) |