Detailed syntax breakdown of Definition df-fib
Step | Hyp | Ref
| Expression |
1 | | cfib 32391 |
. 2
class
Fibci |
2 | | cc0 10899 |
. . . 4
class
0 |
3 | | c1 10900 |
. . . 4
class
1 |
4 | 2, 3 | cs2 14582 |
. . 3
class
〈“01”〉 |
5 | | vw |
. . . 4
setvar 𝑤 |
6 | | cn0 12261 |
. . . . . 6
class
ℕ0 |
7 | 6 | cword 14245 |
. . . . 5
class Word
ℕ0 |
8 | | chash 14072 |
. . . . . . 7
class
♯ |
9 | 8 | ccnv 5590 |
. . . . . 6
class ◡♯ |
10 | | c2 12056 |
. . . . . . 7
class
2 |
11 | | cuz 12610 |
. . . . . . 7
class
ℤ≥ |
12 | 10, 11 | cfv 6447 |
. . . . . 6
class
(ℤ≥‘2) |
13 | 9, 12 | cima 5594 |
. . . . 5
class (◡♯ “
(ℤ≥‘2)) |
14 | 7, 13 | cin 3888 |
. . . 4
class (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) |
15 | 5 | cv 1536 |
. . . . . . . 8
class 𝑤 |
16 | 15, 8 | cfv 6447 |
. . . . . . 7
class
(♯‘𝑤) |
17 | | cmin 11233 |
. . . . . . 7
class
− |
18 | 16, 10, 17 | co 7295 |
. . . . . 6
class
((♯‘𝑤)
− 2) |
19 | 18, 15 | cfv 6447 |
. . . . 5
class (𝑤‘((♯‘𝑤) − 2)) |
20 | 16, 3, 17 | co 7295 |
. . . . . 6
class
((♯‘𝑤)
− 1) |
21 | 20, 15 | cfv 6447 |
. . . . 5
class (𝑤‘((♯‘𝑤) − 1)) |
22 | | caddc 10902 |
. . . . 5
class
+ |
23 | 19, 21, 22 | co 7295 |
. . . 4
class ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) |
24 | 5, 14, 23 | cmpt 5160 |
. . 3
class (𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) |
25 | | csseq 32378 |
. . 3
class
seqstr |
26 | 4, 24, 25 | co 7295 |
. 2
class
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |
27 | 1, 26 | wceq 1537 |
1
wff Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |