Detailed syntax breakdown of Definition df-fib
| Step | Hyp | Ref
| Expression |
| 1 | | cfib 34339 |
. 2
class
Fibci |
| 2 | | cc0 11138 |
. . . 4
class
0 |
| 3 | | c1 11139 |
. . . 4
class
1 |
| 4 | 2, 3 | cs2 14863 |
. . 3
class
〈“01”〉 |
| 5 | | vw |
. . . 4
setvar 𝑤 |
| 6 | | cn0 12510 |
. . . . . 6
class
ℕ0 |
| 7 | 6 | cword 14535 |
. . . . 5
class Word
ℕ0 |
| 8 | | chash 14352 |
. . . . . . 7
class
♯ |
| 9 | 8 | ccnv 5666 |
. . . . . 6
class ◡♯ |
| 10 | | c2 12304 |
. . . . . . 7
class
2 |
| 11 | | cuz 12861 |
. . . . . . 7
class
ℤ≥ |
| 12 | 10, 11 | cfv 6542 |
. . . . . 6
class
(ℤ≥‘2) |
| 13 | 9, 12 | cima 5670 |
. . . . 5
class (◡♯ “
(ℤ≥‘2)) |
| 14 | 7, 13 | cin 3932 |
. . . 4
class (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) |
| 15 | 5 | cv 1538 |
. . . . . . . 8
class 𝑤 |
| 16 | 15, 8 | cfv 6542 |
. . . . . . 7
class
(♯‘𝑤) |
| 17 | | cmin 11475 |
. . . . . . 7
class
− |
| 18 | 16, 10, 17 | co 7414 |
. . . . . 6
class
((♯‘𝑤)
− 2) |
| 19 | 18, 15 | cfv 6542 |
. . . . 5
class (𝑤‘((♯‘𝑤) − 2)) |
| 20 | 16, 3, 17 | co 7414 |
. . . . . 6
class
((♯‘𝑤)
− 1) |
| 21 | 20, 15 | cfv 6542 |
. . . . 5
class (𝑤‘((♯‘𝑤) − 1)) |
| 22 | | caddc 11141 |
. . . . 5
class
+ |
| 23 | 19, 21, 22 | co 7414 |
. . . 4
class ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) |
| 24 | 5, 14, 23 | cmpt 5207 |
. . 3
class (𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) |
| 25 | | csseq 34326 |
. . 3
class
seqstr |
| 26 | 4, 24, 25 | co 7414 |
. 2
class
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |
| 27 | 1, 26 | wceq 1539 |
1
wff Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |