| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fib0 | Structured version Visualization version GIF version | ||
| Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| fib0 | ⊢ (Fibci‘0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fib 34405 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (Fibci‘0) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) |
| 3 | nn0ex 12384 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
| 5 | 0nn0 12393 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
| 7 | 1nn0 12394 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
| 9 | 6, 8 | s2cld 14775 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
| 10 | eqid 2731 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
| 11 | fiblem 34406 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
| 13 | 2nn 12195 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | lbfzo0 13596 | . . . . . . 7 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
| 15 | 13, 14 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^2) |
| 16 | s2len 14793 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
| 17 | 16 | oveq2i 7357 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
| 18 | 15, 17 | eleqtrri 2830 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“01”〉)) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → 0 ∈ (0..^(♯‘〈“01”〉))) |
| 20 | 4, 9, 10, 12, 19 | sseqfv1 34397 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0)) |
| 21 | 20 | mptru 1548 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0) |
| 22 | s2fv0 14791 | . . 3 ⊢ (0 ∈ ℕ0 → (〈“01”〉‘0) = 0) | |
| 23 | 5, 22 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘0) = 0 |
| 24 | 2, 21, 23 | 3eqtri 2758 | 1 ⊢ (Fibci‘0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ↦ cmpt 5172 ◡ccnv 5615 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 − cmin 11341 ℕcn 12122 2c2 12177 ℕ0cn0 12378 ℤ≥cuz 12729 ..^cfzo 13551 ♯chash 14234 Word cword 14417 〈“cs2 14745 seqstrcsseq 34391 Fibcicfib 34404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-s2 14752 df-sseq 34392 df-fib 34405 |
| This theorem is referenced by: fib2 34410 |
| Copyright terms: Public domain | W3C validator |