| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fib0 | Structured version Visualization version GIF version | ||
| Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| fib0 | ⊢ (Fibci‘0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fib 34396 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
| 2 | 1 | fveq1i 6866 | . 2 ⊢ (Fibci‘0) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) |
| 3 | nn0ex 12464 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
| 5 | 0nn0 12473 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
| 7 | 1nn0 12474 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
| 9 | 6, 8 | s2cld 14847 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
| 10 | eqid 2730 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
| 11 | fiblem 34397 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
| 13 | 2nn 12270 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | lbfzo0 13673 | . . . . . . 7 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
| 15 | 13, 14 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^2) |
| 16 | s2len 14865 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
| 17 | 16 | oveq2i 7405 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
| 18 | 15, 17 | eleqtrri 2828 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“01”〉)) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → 0 ∈ (0..^(♯‘〈“01”〉))) |
| 20 | 4, 9, 10, 12, 19 | sseqfv1 34388 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0)) |
| 21 | 20 | mptru 1547 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0) |
| 22 | s2fv0 14863 | . . 3 ⊢ (0 ∈ ℕ0 → (〈“01”〉‘0) = 0) | |
| 23 | 5, 22 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘0) = 0 |
| 24 | 2, 21, 23 | 3eqtri 2757 | 1 ⊢ (Fibci‘0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 ↦ cmpt 5196 ◡ccnv 5645 “ cima 5649 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 0cc0 11086 1c1 11087 + caddc 11089 − cmin 11423 ℕcn 12197 2c2 12252 ℕ0cn0 12458 ℤ≥cuz 12809 ..^cfzo 13628 ♯chash 14305 Word cword 14488 〈“cs2 14817 seqstrcsseq 34382 Fibcicfib 34395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-word 14489 df-lsw 14538 df-concat 14546 df-s1 14571 df-s2 14824 df-sseq 34383 df-fib 34396 |
| This theorem is referenced by: fib2 34401 |
| Copyright terms: Public domain | W3C validator |