| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fib0 | Structured version Visualization version GIF version | ||
| Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| fib0 | ⊢ (Fibci‘0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fib 34340 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
| 2 | 1 | fveq1i 6888 | . 2 ⊢ (Fibci‘0) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) |
| 3 | nn0ex 12516 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
| 5 | 0nn0 12525 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
| 7 | 1nn0 12526 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
| 9 | 6, 8 | s2cld 14893 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
| 10 | eqid 2734 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
| 11 | fiblem 34341 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
| 13 | 2nn 12322 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | lbfzo0 13722 | . . . . . . 7 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
| 15 | 13, 14 | mpbir 231 | . . . . . 6 ⊢ 0 ∈ (0..^2) |
| 16 | s2len 14911 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
| 17 | 16 | oveq2i 7425 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
| 18 | 15, 17 | eleqtrri 2832 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“01”〉)) |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → 0 ∈ (0..^(♯‘〈“01”〉))) |
| 20 | 4, 9, 10, 12, 19 | sseqfv1 34332 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0)) |
| 21 | 20 | mptru 1546 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0) |
| 22 | s2fv0 14909 | . . 3 ⊢ (0 ∈ ℕ0 → (〈“01”〉‘0) = 0) | |
| 23 | 5, 22 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘0) = 0 |
| 24 | 2, 21, 23 | 3eqtri 2761 | 1 ⊢ (Fibci‘0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 Vcvv 3464 ∩ cin 3932 ↦ cmpt 5207 ◡ccnv 5666 “ cima 5670 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 + caddc 11141 − cmin 11475 ℕcn 12249 2c2 12304 ℕ0cn0 12510 ℤ≥cuz 12861 ..^cfzo 13677 ♯chash 14352 Word cword 14535 〈“cs2 14863 seqstrcsseq 34326 Fibcicfib 34339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-xnn0 12584 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-word 14536 df-lsw 14584 df-concat 14592 df-s1 14617 df-s2 14870 df-sseq 34327 df-fib 34340 |
| This theorem is referenced by: fib2 34345 |
| Copyright terms: Public domain | W3C validator |