Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fib0 Structured version   Visualization version   GIF version

Theorem fib0 33890
Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fib0 (Fibci‘0) = 0

Proof of Theorem fib0
StepHypRef Expression
1 df-fib 33888 . . 3 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6883 . 2 (Fibci‘0) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0)
3 nn0ex 12476 . . . . 5 0 ∈ V
43a1i 11 . . . 4 (⊤ → ℕ0 ∈ V)
5 0nn0 12485 . . . . . 6 0 ∈ ℕ0
65a1i 11 . . . . 5 (⊤ → 0 ∈ ℕ0)
7 1nn0 12486 . . . . . 6 1 ∈ ℕ0
87a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
96, 8s2cld 14820 . . . 4 (⊤ → ⟨“01”⟩ ∈ Word ℕ0)
10 eqid 2724 . . . 4 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
11 fiblem 33889 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1211a1i 11 . . . 4 (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
13 2nn 12283 . . . . . . 7 2 ∈ ℕ
14 lbfzo0 13670 . . . . . . 7 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1513, 14mpbir 230 . . . . . 6 0 ∈ (0..^2)
16 s2len 14838 . . . . . . 7 (♯‘⟨“01”⟩) = 2
1716oveq2i 7413 . . . . . 6 (0..^(♯‘⟨“01”⟩)) = (0..^2)
1815, 17eleqtrri 2824 . . . . 5 0 ∈ (0..^(♯‘⟨“01”⟩))
1918a1i 11 . . . 4 (⊤ → 0 ∈ (0..^(♯‘⟨“01”⟩)))
204, 9, 10, 12, 19sseqfv1 33880 . . 3 (⊤ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (⟨“01”⟩‘0))
2120mptru 1540 . 2 ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (⟨“01”⟩‘0)
22 s2fv0 14836 . . 3 (0 ∈ ℕ0 → (⟨“01”⟩‘0) = 0)
235, 22ax-mp 5 . 2 (⟨“01”⟩‘0) = 0
242, 21, 233eqtri 2756 1 (Fibci‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wtru 1534  wcel 2098  Vcvv 3466  cin 3940  cmpt 5222  ccnv 5666  cima 5670  wf 6530  cfv 6534  (class class class)co 7402  0cc0 11107  1c1 11108   + caddc 11110  cmin 11442  cn 12210  2c2 12265  0cn0 12470  cuz 12820  ..^cfzo 13625  chash 14288  Word cword 14462  ⟨“cs2 14790  seqstrcsseq 33874  Fibcicfib 33887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-n0 12471  df-xnn0 12543  df-z 12557  df-uz 12821  df-rp 12973  df-fz 13483  df-fzo 13626  df-seq 13965  df-hash 14289  df-word 14463  df-lsw 14511  df-concat 14519  df-s1 14544  df-s2 14797  df-sseq 33875  df-fib 33888
This theorem is referenced by:  fib2  33893
  Copyright terms: Public domain W3C validator