Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fib0 | Structured version Visualization version GIF version |
Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
Ref | Expression |
---|---|
fib0 | ⊢ (Fibci‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fib 31883 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
2 | 1 | fveq1i 6659 | . 2 ⊢ (Fibci‘0) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) |
3 | nn0ex 11940 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
5 | 0nn0 11949 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
7 | 1nn0 11950 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
9 | 6, 8 | s2cld 14280 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
10 | eqid 2758 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
11 | fiblem 31884 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
13 | 2nn 11747 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | lbfzo0 13126 | . . . . . . 7 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
15 | 13, 14 | mpbir 234 | . . . . . 6 ⊢ 0 ∈ (0..^2) |
16 | s2len 14298 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
17 | 16 | oveq2i 7161 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
18 | 15, 17 | eleqtrri 2851 | . . . . 5 ⊢ 0 ∈ (0..^(♯‘〈“01”〉)) |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → 0 ∈ (0..^(♯‘〈“01”〉))) |
20 | 4, 9, 10, 12, 19 | sseqfv1 31875 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0)) |
21 | 20 | mptru 1545 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (〈“01”〉‘0) |
22 | s2fv0 14296 | . . 3 ⊢ (0 ∈ ℕ0 → (〈“01”〉‘0) = 0) | |
23 | 5, 22 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘0) = 0 |
24 | 2, 21, 23 | 3eqtri 2785 | 1 ⊢ (Fibci‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 Vcvv 3409 ∩ cin 3857 ↦ cmpt 5112 ◡ccnv 5523 “ cima 5527 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 + caddc 10578 − cmin 10908 ℕcn 11674 2c2 11729 ℕ0cn0 11934 ℤ≥cuz 12282 ..^cfzo 13082 ♯chash 13740 Word cword 13913 〈“cs2 14250 seqstrcsseq 31869 Fibcicfib 31882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-seq 13419 df-hash 13741 df-word 13914 df-lsw 13962 df-concat 13970 df-s1 13997 df-s2 14257 df-sseq 31870 df-fib 31883 |
This theorem is referenced by: fib2 31888 |
Copyright terms: Public domain | W3C validator |