Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fib0 Structured version   Visualization version   GIF version

Theorem fib0 34394
Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fib0 (Fibci‘0) = 0

Proof of Theorem fib0
StepHypRef Expression
1 df-fib 34392 . . 3 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6912 . 2 (Fibci‘0) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0)
3 nn0ex 12536 . . . . 5 0 ∈ V
43a1i 11 . . . 4 (⊤ → ℕ0 ∈ V)
5 0nn0 12545 . . . . . 6 0 ∈ ℕ0
65a1i 11 . . . . 5 (⊤ → 0 ∈ ℕ0)
7 1nn0 12546 . . . . . 6 1 ∈ ℕ0
87a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
96, 8s2cld 14913 . . . 4 (⊤ → ⟨“01”⟩ ∈ Word ℕ0)
10 eqid 2736 . . . 4 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
11 fiblem 34393 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1211a1i 11 . . . 4 (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
13 2nn 12343 . . . . . . 7 2 ∈ ℕ
14 lbfzo0 13742 . . . . . . 7 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1513, 14mpbir 231 . . . . . 6 0 ∈ (0..^2)
16 s2len 14931 . . . . . . 7 (♯‘⟨“01”⟩) = 2
1716oveq2i 7446 . . . . . 6 (0..^(♯‘⟨“01”⟩)) = (0..^2)
1815, 17eleqtrri 2839 . . . . 5 0 ∈ (0..^(♯‘⟨“01”⟩))
1918a1i 11 . . . 4 (⊤ → 0 ∈ (0..^(♯‘⟨“01”⟩)))
204, 9, 10, 12, 19sseqfv1 34384 . . 3 (⊤ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (⟨“01”⟩‘0))
2120mptru 1545 . 2 ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘0) = (⟨“01”⟩‘0)
22 s2fv0 14929 . . 3 (0 ∈ ℕ0 → (⟨“01”⟩‘0) = 0)
235, 22ax-mp 5 . 2 (⟨“01”⟩‘0) = 0
242, 21, 233eqtri 2768 1 (Fibci‘0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wtru 1539  wcel 2107  Vcvv 3479  cin 3963  cmpt 5232  ccnv 5689  cima 5693  wf 6562  cfv 6566  (class class class)co 7435  0cc0 11159  1c1 11160   + caddc 11162  cmin 11496  cn 12270  2c2 12325  0cn0 12530  cuz 12882  ..^cfzo 13697  chash 14372  Word cword 14555  ⟨“cs2 14883  seqstrcsseq 34378  Fibcicfib 34391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-n0 12531  df-xnn0 12604  df-z 12618  df-uz 12883  df-rp 13039  df-fz 13551  df-fzo 13698  df-seq 14046  df-hash 14373  df-word 14556  df-lsw 14604  df-concat 14612  df-s1 14637  df-s2 14890  df-sseq 34379  df-fib 34392
This theorem is referenced by:  fib2  34397
  Copyright terms: Public domain W3C validator