Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiblem Structured version   Visualization version   GIF version

Theorem fiblem 34382
Description: Lemma for fib0 34383, fib1 34384 and fibp1 34385. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fiblem (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0

Proof of Theorem fiblem
StepHypRef Expression
1 s2len 14796 . . . . . . 7 (♯‘⟨“01”⟩) = 2
21eqcomi 2738 . . . . . 6 2 = (♯‘⟨“01”⟩)
32fveq2i 6825 . . . . 5 (ℤ‘2) = (ℤ‘(♯‘⟨“01”⟩))
43imaeq2i 6009 . . . 4 (♯ “ (ℤ‘2)) = (♯ “ (ℤ‘(♯‘⟨“01”⟩)))
54ineq2i 4168 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘2))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
6 eqid 2729 . . 3 ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))
75, 6mpteq12i 5189 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))
8 elin 3919 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↔ (𝑤 ∈ Word ℕ0𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))))
98simplbi 497 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ Word ℕ0)
10 wrdf 14425 . . . . 5 (𝑤 ∈ Word ℕ0𝑤:(0..^(♯‘𝑤))⟶ℕ0)
119, 10syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤:(0..^(♯‘𝑤))⟶ℕ0)
128simprbi 496 . . . . . . . . 9 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
13 hashf 14245 . . . . . . . . . 10 ♯:V⟶(ℕ0 ∪ {+∞})
14 ffn 6652 . . . . . . . . . 10 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
15 elpreima 6992 . . . . . . . . . 10 (♯ Fn V → (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1712, 16sylib 218 . . . . . . . 8 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1817simprd 495 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))
1918, 3eleqtrrdi 2839 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘2))
20 uznn0sub 12774 . . . . . 6 ((♯‘𝑤) ∈ (ℤ‘2) → ((♯‘𝑤) − 2) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ ℕ0)
22 1zzd 12506 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 1 ∈ ℤ)
23 1p1e2 12248 . . . . . . . . 9 (1 + 1) = 2
2423fveq2i 6825 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
2519, 24eleqtrrdi 2839 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(1 + 1)))
26 peano2uzr 12804 . . . . . . 7 ((1 ∈ ℤ ∧ (♯‘𝑤) ∈ (ℤ‘(1 + 1))) → (♯‘𝑤) ∈ (ℤ‘1))
2722, 25, 26syl2anc 584 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘1))
28 nnuz 12778 . . . . . 6 ℕ = (ℤ‘1)
2927, 28eleqtrrdi 2839 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℕ)
3029nnred 12143 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℝ)
31 2rp 12898 . . . . . . 7 2 ∈ ℝ+
3231a1i 11 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 2 ∈ ℝ+)
3330, 32ltsubrpd 12969 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
34 elfzo0 13603 . . . . 5 (((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)) ↔ (((♯‘𝑤) − 2) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ ((♯‘𝑤) − 2) < (♯‘𝑤)))
3521, 29, 33, 34syl3anbrc 1344 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)))
3611, 35ffvelcdmd 7019 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 2)) ∈ ℕ0)
37 fzo0end 13661 . . . . 5 ((♯‘𝑤) ∈ ℕ → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3829, 37syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3911, 38ffvelcdmd 7019 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 1)) ∈ ℕ0)
4036, 39nn0addcld 12449 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) ∈ ℕ0)
417, 40fmpti 7046 1 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3436  cun 3901  cin 3902  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  +∞cpnf 11146   < clt 11149  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  +crp 12893  ..^cfzo 13557  chash 14237  Word cword 14420  ⟨“cs2 14748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755
This theorem is referenced by:  fib0  34383  fib1  34384  fibp1  34385
  Copyright terms: Public domain W3C validator