Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiblem Structured version   Visualization version   GIF version

Theorem fiblem 31656
Description: Lemma for fib0 31657, fib1 31658 and fibp1 31659. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fiblem (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0

Proof of Theorem fiblem
StepHypRef Expression
1 s2len 14250 . . . . . . 7 (♯‘⟨“01”⟩) = 2
21eqcomi 2830 . . . . . 6 2 = (♯‘⟨“01”⟩)
32fveq2i 6672 . . . . 5 (ℤ‘2) = (ℤ‘(♯‘⟨“01”⟩))
43imaeq2i 5926 . . . 4 (♯ “ (ℤ‘2)) = (♯ “ (ℤ‘(♯‘⟨“01”⟩)))
54ineq2i 4185 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘2))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
6 eqid 2821 . . 3 ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))
75, 6mpteq12i 5158 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))
8 elin 4168 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↔ (𝑤 ∈ Word ℕ0𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))))
98simplbi 500 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ Word ℕ0)
10 wrdf 13865 . . . . 5 (𝑤 ∈ Word ℕ0𝑤:(0..^(♯‘𝑤))⟶ℕ0)
119, 10syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤:(0..^(♯‘𝑤))⟶ℕ0)
128simprbi 499 . . . . . . . . 9 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
13 hashf 13697 . . . . . . . . . 10 ♯:V⟶(ℕ0 ∪ {+∞})
14 ffn 6513 . . . . . . . . . 10 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
15 elpreima 6827 . . . . . . . . . 10 (♯ Fn V → (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1712, 16sylib 220 . . . . . . . 8 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1817simprd 498 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))
1918, 3eleqtrrdi 2924 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘2))
20 uznn0sub 12276 . . . . . 6 ((♯‘𝑤) ∈ (ℤ‘2) → ((♯‘𝑤) − 2) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ ℕ0)
22 1zzd 12012 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 1 ∈ ℤ)
23 1p1e2 11761 . . . . . . . . 9 (1 + 1) = 2
2423fveq2i 6672 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
2519, 24eleqtrrdi 2924 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(1 + 1)))
26 peano2uzr 12302 . . . . . . 7 ((1 ∈ ℤ ∧ (♯‘𝑤) ∈ (ℤ‘(1 + 1))) → (♯‘𝑤) ∈ (ℤ‘1))
2722, 25, 26syl2anc 586 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘1))
28 nnuz 12280 . . . . . 6 ℕ = (ℤ‘1)
2927, 28eleqtrrdi 2924 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℕ)
3029nnred 11652 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℝ)
31 2rp 12393 . . . . . . 7 2 ∈ ℝ+
3231a1i 11 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 2 ∈ ℝ+)
3330, 32ltsubrpd 12462 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
34 elfzo0 13077 . . . . 5 (((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)) ↔ (((♯‘𝑤) − 2) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ ((♯‘𝑤) − 2) < (♯‘𝑤)))
3521, 29, 33, 34syl3anbrc 1339 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)))
3611, 35ffvelrnd 6851 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 2)) ∈ ℕ0)
37 fzo0end 13128 . . . . 5 ((♯‘𝑤) ∈ ℕ → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3829, 37syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3911, 38ffvelrnd 6851 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 1)) ∈ ℕ0)
4036, 39nn0addcld 11958 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) ∈ ℕ0)
417, 40fmpti 6875 1 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2110  Vcvv 3494  cun 3933  cin 3934  {csn 4566   class class class wbr 5065  cmpt 5145  ccnv 5553  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  0cc0 10536  1c1 10537   + caddc 10539  +∞cpnf 10671   < clt 10674  cmin 10869  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  +crp 12388  ..^cfzo 13032  chash 13689  Word cword 13860  ⟨“cs2 14202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-concat 13922  df-s1 13949  df-s2 14209
This theorem is referenced by:  fib0  31657  fib1  31658  fibp1  31659
  Copyright terms: Public domain W3C validator