Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiblem Structured version   Visualization version   GIF version

Theorem fiblem 31766
Description: Lemma for fib0 31767, fib1 31768 and fibp1 31769. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fiblem (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0

Proof of Theorem fiblem
StepHypRef Expression
1 s2len 14242 . . . . . . 7 (♯‘⟨“01”⟩) = 2
21eqcomi 2807 . . . . . 6 2 = (♯‘⟨“01”⟩)
32fveq2i 6648 . . . . 5 (ℤ‘2) = (ℤ‘(♯‘⟨“01”⟩))
43imaeq2i 5894 . . . 4 (♯ “ (ℤ‘2)) = (♯ “ (ℤ‘(♯‘⟨“01”⟩)))
54ineq2i 4136 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘2))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
6 eqid 2798 . . 3 ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))
75, 6mpteq12i 5123 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))
8 elin 3897 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↔ (𝑤 ∈ Word ℕ0𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))))
98simplbi 501 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ Word ℕ0)
10 wrdf 13862 . . . . 5 (𝑤 ∈ Word ℕ0𝑤:(0..^(♯‘𝑤))⟶ℕ0)
119, 10syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤:(0..^(♯‘𝑤))⟶ℕ0)
128simprbi 500 . . . . . . . . 9 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
13 hashf 13694 . . . . . . . . . 10 ♯:V⟶(ℕ0 ∪ {+∞})
14 ffn 6487 . . . . . . . . . 10 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
15 elpreima 6805 . . . . . . . . . 10 (♯ Fn V → (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1712, 16sylib 221 . . . . . . . 8 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1817simprd 499 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))
1918, 3eleqtrrdi 2901 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘2))
20 uznn0sub 12265 . . . . . 6 ((♯‘𝑤) ∈ (ℤ‘2) → ((♯‘𝑤) − 2) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ ℕ0)
22 1zzd 12001 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 1 ∈ ℤ)
23 1p1e2 11750 . . . . . . . . 9 (1 + 1) = 2
2423fveq2i 6648 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
2519, 24eleqtrrdi 2901 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(1 + 1)))
26 peano2uzr 12291 . . . . . . 7 ((1 ∈ ℤ ∧ (♯‘𝑤) ∈ (ℤ‘(1 + 1))) → (♯‘𝑤) ∈ (ℤ‘1))
2722, 25, 26syl2anc 587 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘1))
28 nnuz 12269 . . . . . 6 ℕ = (ℤ‘1)
2927, 28eleqtrrdi 2901 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℕ)
3029nnred 11640 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℝ)
31 2rp 12382 . . . . . . 7 2 ∈ ℝ+
3231a1i 11 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 2 ∈ ℝ+)
3330, 32ltsubrpd 12451 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
34 elfzo0 13073 . . . . 5 (((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)) ↔ (((♯‘𝑤) − 2) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ ((♯‘𝑤) − 2) < (♯‘𝑤)))
3521, 29, 33, 34syl3anbrc 1340 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)))
3611, 35ffvelrnd 6829 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 2)) ∈ ℕ0)
37 fzo0end 13124 . . . . 5 ((♯‘𝑤) ∈ ℕ → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3829, 37syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3911, 38ffvelrnd 6829 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 1)) ∈ ℕ0)
4036, 39nn0addcld 11947 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) ∈ ℕ0)
417, 40fmpti 6853 1 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2111  Vcvv 3441  cun 3879  cin 3880  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661   < clt 10664  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ..^cfzo 13028  chash 13686  Word cword 13857  ⟨“cs2 14194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201
This theorem is referenced by:  fib0  31767  fib1  31768  fibp1  31769
  Copyright terms: Public domain W3C validator