Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiblem Structured version   Visualization version   GIF version

Theorem fiblem 34363
Description: Lemma for fib0 34364, fib1 34365 and fibp1 34366. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fiblem (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0

Proof of Theorem fiblem
StepHypRef Expression
1 s2len 14938 . . . . . . 7 (♯‘⟨“01”⟩) = 2
21eqcomi 2749 . . . . . 6 2 = (♯‘⟨“01”⟩)
32fveq2i 6923 . . . . 5 (ℤ‘2) = (ℤ‘(♯‘⟨“01”⟩))
43imaeq2i 6087 . . . 4 (♯ “ (ℤ‘2)) = (♯ “ (ℤ‘(♯‘⟨“01”⟩)))
54ineq2i 4238 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘2))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
6 eqid 2740 . . 3 ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))
75, 6mpteq12i 5272 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))
8 elin 3992 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) ↔ (𝑤 ∈ Word ℕ0𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))))
98simplbi 497 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ Word ℕ0)
10 wrdf 14567 . . . . 5 (𝑤 ∈ Word ℕ0𝑤:(0..^(♯‘𝑤))⟶ℕ0)
119, 10syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤:(0..^(♯‘𝑤))⟶ℕ0)
128simprbi 496 . . . . . . . . 9 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
13 hashf 14387 . . . . . . . . . 10 ♯:V⟶(ℕ0 ∪ {+∞})
14 ffn 6747 . . . . . . . . . 10 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
15 elpreima 7091 . . . . . . . . . 10 (♯ Fn V → (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))))
1613, 14, 15mp2b 10 . . . . . . . . 9 (𝑤 ∈ (♯ “ (ℤ‘(♯‘⟨“01”⟩))) ↔ (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1712, 16sylib 218 . . . . . . . 8 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤 ∈ V ∧ (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩))))
1817simprd 495 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(♯‘⟨“01”⟩)))
1918, 3eleqtrrdi 2855 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘2))
20 uznn0sub 12942 . . . . . 6 ((♯‘𝑤) ∈ (ℤ‘2) → ((♯‘𝑤) − 2) ∈ ℕ0)
2119, 20syl 17 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ ℕ0)
22 1zzd 12674 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 1 ∈ ℤ)
23 1p1e2 12418 . . . . . . . . 9 (1 + 1) = 2
2423fveq2i 6923 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
2519, 24eleqtrrdi 2855 . . . . . . 7 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘(1 + 1)))
26 peano2uzr 12968 . . . . . . 7 ((1 ∈ ℤ ∧ (♯‘𝑤) ∈ (ℤ‘(1 + 1))) → (♯‘𝑤) ∈ (ℤ‘1))
2722, 25, 26syl2anc 583 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ (ℤ‘1))
28 nnuz 12946 . . . . . 6 ℕ = (ℤ‘1)
2927, 28eleqtrrdi 2855 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℕ)
3029nnred 12308 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (♯‘𝑤) ∈ ℝ)
31 2rp 13062 . . . . . . 7 2 ∈ ℝ+
3231a1i 11 . . . . . 6 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → 2 ∈ ℝ+)
3330, 32ltsubrpd 13131 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
34 elfzo0 13757 . . . . 5 (((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)) ↔ (((♯‘𝑤) − 2) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ ((♯‘𝑤) − 2) < (♯‘𝑤)))
3521, 29, 33, 34syl3anbrc 1343 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 2) ∈ (0..^(♯‘𝑤)))
3611, 35ffvelcdmd 7119 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 2)) ∈ ℕ0)
37 fzo0end 13808 . . . . 5 ((♯‘𝑤) ∈ ℕ → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3829, 37syl 17 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((♯‘𝑤) − 1) ∈ (0..^(♯‘𝑤)))
3911, 38ffvelcdmd 7119 . . 3 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → (𝑤‘((♯‘𝑤) − 1)) ∈ ℕ0)
4036, 39nn0addcld 12617 . 2 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) ∈ ℕ0)
417, 40fmpti 7146 1 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3488  cun 3974  cin 3975  {csn 4648   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321   < clt 11324  cmin 11520  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs2 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897
This theorem is referenced by:  fib0  34364  fib1  34365  fibp1  34366
  Copyright terms: Public domain W3C validator