Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fib1 | Structured version Visualization version GIF version |
Description: Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
Ref | Expression |
---|---|
fib1 | ⊢ (Fibci‘1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fib 32364 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
2 | 1 | fveq1i 6775 | . 2 ⊢ (Fibci‘1) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) |
3 | nn0ex 12239 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
5 | 0nn0 12248 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
7 | 1nn0 12249 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
9 | 6, 8 | s2cld 14584 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
10 | eqid 2738 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
11 | fiblem 32365 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
13 | 2nn 12046 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | 1lt2 12144 | . . . . . . 7 ⊢ 1 < 2 | |
15 | elfzo0 13428 | . . . . . . 7 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
16 | 7, 13, 14, 15 | mpbir3an 1340 | . . . . . 6 ⊢ 1 ∈ (0..^2) |
17 | s2len 14602 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
18 | 17 | oveq2i 7286 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
19 | 16, 18 | eleqtrri 2838 | . . . . 5 ⊢ 1 ∈ (0..^(♯‘〈“01”〉)) |
20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ (0..^(♯‘〈“01”〉))) |
21 | 4, 9, 10, 12, 20 | sseqfv1 32356 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (〈“01”〉‘1)) |
22 | 21 | mptru 1546 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (〈“01”〉‘1) |
23 | s2fv1 14601 | . . 3 ⊢ (1 ∈ ℕ0 → (〈“01”〉‘1) = 1) | |
24 | 7, 23 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘1) = 1 |
25 | 2, 22, 24 | 3eqtri 2770 | 1 ⊢ (Fibci‘1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 − cmin 11205 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤ≥cuz 12582 ..^cfzo 13382 ♯chash 14044 Word cword 14217 〈“cs2 14554 seqstrcsseq 32350 Fibcicfib 32363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-s2 14561 df-sseq 32351 df-fib 32364 |
This theorem is referenced by: fib2 32369 fib3 32370 |
Copyright terms: Public domain | W3C validator |