| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fib1 | Structured version Visualization version GIF version | ||
| Description: Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| fib1 | ⊢ (Fibci‘1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fib 34433 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
| 2 | 1 | fveq1i 6831 | . 2 ⊢ (Fibci‘1) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) |
| 3 | nn0ex 12396 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
| 5 | 0nn0 12405 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
| 7 | 1nn0 12406 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
| 9 | 6, 8 | s2cld 14782 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
| 10 | eqid 2733 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
| 11 | fiblem 34434 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
| 13 | 2nn 12207 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 1lt2 12300 | . . . . . . 7 ⊢ 1 < 2 | |
| 15 | elfzo0 13604 | . . . . . . 7 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
| 16 | 7, 13, 14, 15 | mpbir3an 1342 | . . . . . 6 ⊢ 1 ∈ (0..^2) |
| 17 | s2len 14800 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
| 18 | 17 | oveq2i 7365 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
| 19 | 16, 18 | eleqtrri 2832 | . . . . 5 ⊢ 1 ∈ (0..^(♯‘〈“01”〉)) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ (0..^(♯‘〈“01”〉))) |
| 21 | 4, 9, 10, 12, 20 | sseqfv1 34425 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (〈“01”〉‘1)) |
| 22 | 21 | mptru 1548 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (〈“01”〉‘1) |
| 23 | s2fv1 14799 | . . 3 ⊢ (1 ∈ ℕ0 → (〈“01”〉‘1) = 1) | |
| 24 | 7, 23 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘1) = 1 |
| 25 | 2, 22, 24 | 3eqtri 2760 | 1 ⊢ (Fibci‘1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 “ cima 5624 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 + caddc 11018 < clt 11155 − cmin 11353 ℕcn 12134 2c2 12189 ℕ0cn0 12390 ℤ≥cuz 12740 ..^cfzo 13558 ♯chash 14241 Word cword 14424 〈“cs2 14752 seqstrcsseq 34419 Fibcicfib 34432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-word 14425 df-lsw 14474 df-concat 14482 df-s1 14508 df-s2 14759 df-sseq 34420 df-fib 34433 |
| This theorem is referenced by: fib2 34438 fib3 34439 |
| Copyright terms: Public domain | W3C validator |