| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fib1 | Structured version Visualization version GIF version | ||
| Description: Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| fib1 | ⊢ (Fibci‘1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fib 34429 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ (Fibci‘1) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) |
| 3 | nn0ex 12507 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
| 5 | 0nn0 12516 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
| 7 | 1nn0 12517 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
| 9 | 6, 8 | s2cld 14890 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
| 10 | eqid 2735 | . . . 4 ⊢ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) = (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉)))) | |
| 11 | fiblem 34430 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
| 13 | 2nn 12313 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 1lt2 12411 | . . . . . . 7 ⊢ 1 < 2 | |
| 15 | elfzo0 13717 | . . . . . . 7 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
| 16 | 7, 13, 14, 15 | mpbir3an 1342 | . . . . . 6 ⊢ 1 ∈ (0..^2) |
| 17 | s2len 14908 | . . . . . . 7 ⊢ (♯‘〈“01”〉) = 2 | |
| 18 | 17 | oveq2i 7416 | . . . . . 6 ⊢ (0..^(♯‘〈“01”〉)) = (0..^2) |
| 19 | 16, 18 | eleqtrri 2833 | . . . . 5 ⊢ 1 ∈ (0..^(♯‘〈“01”〉)) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ (0..^(♯‘〈“01”〉))) |
| 21 | 4, 9, 10, 12, 20 | sseqfv1 34421 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (〈“01”〉‘1)) |
| 22 | 21 | mptru 1547 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (〈“01”〉‘1) |
| 23 | s2fv1 14907 | . . 3 ⊢ (1 ∈ ℕ0 → (〈“01”〉‘1) = 1) | |
| 24 | 7, 23 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘1) = 1 |
| 25 | 2, 22, 24 | 3eqtri 2762 | 1 ⊢ (Fibci‘1) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 − cmin 11466 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤ≥cuz 12852 ..^cfzo 13671 ♯chash 14348 Word cword 14531 〈“cs2 14860 seqstrcsseq 34415 Fibcicfib 34428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-s2 14867 df-sseq 34416 df-fib 34429 |
| This theorem is referenced by: fib2 34434 fib3 34435 |
| Copyright terms: Public domain | W3C validator |