Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fib1 Structured version   Visualization version   GIF version

Theorem fib1 33891
Description: Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fib1 (Fibci‘1) = 1

Proof of Theorem fib1
StepHypRef Expression
1 df-fib 33888 . . 3 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6883 . 2 (Fibci‘1) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1)
3 nn0ex 12476 . . . . 5 0 ∈ V
43a1i 11 . . . 4 (⊤ → ℕ0 ∈ V)
5 0nn0 12485 . . . . . 6 0 ∈ ℕ0
65a1i 11 . . . . 5 (⊤ → 0 ∈ ℕ0)
7 1nn0 12486 . . . . . 6 1 ∈ ℕ0
87a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
96, 8s2cld 14820 . . . 4 (⊤ → ⟨“01”⟩ ∈ Word ℕ0)
10 eqid 2724 . . . 4 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
11 fiblem 33889 . . . . 5 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1211a1i 11 . . . 4 (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
13 2nn 12283 . . . . . . 7 2 ∈ ℕ
14 1lt2 12381 . . . . . . 7 1 < 2
15 elfzo0 13671 . . . . . . 7 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
167, 13, 14, 15mpbir3an 1338 . . . . . 6 1 ∈ (0..^2)
17 s2len 14838 . . . . . . 7 (♯‘⟨“01”⟩) = 2
1817oveq2i 7413 . . . . . 6 (0..^(♯‘⟨“01”⟩)) = (0..^2)
1916, 18eleqtrri 2824 . . . . 5 1 ∈ (0..^(♯‘⟨“01”⟩))
2019a1i 11 . . . 4 (⊤ → 1 ∈ (0..^(♯‘⟨“01”⟩)))
214, 9, 10, 12, 20sseqfv1 33880 . . 3 (⊤ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (⟨“01”⟩‘1))
2221mptru 1540 . 2 ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘1) = (⟨“01”⟩‘1)
23 s2fv1 14837 . . 3 (1 ∈ ℕ0 → (⟨“01”⟩‘1) = 1)
247, 23ax-mp 5 . 2 (⟨“01”⟩‘1) = 1
252, 22, 243eqtri 2756 1 (Fibci‘1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wtru 1534  wcel 2098  Vcvv 3466  cin 3940   class class class wbr 5139  cmpt 5222  ccnv 5666  cima 5670  wf 6530  cfv 6534  (class class class)co 7402  0cc0 11107  1c1 11108   + caddc 11110   < clt 11246  cmin 11442  cn 12210  2c2 12265  0cn0 12470  cuz 12820  ..^cfzo 13625  chash 14288  Word cword 14462  ⟨“cs2 14790  seqstrcsseq 33874  Fibcicfib 33887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-n0 12471  df-xnn0 12543  df-z 12557  df-uz 12821  df-rp 12973  df-fz 13483  df-fzo 13626  df-seq 13965  df-hash 14289  df-word 14463  df-lsw 14511  df-concat 14519  df-s1 14544  df-s2 14797  df-sseq 33875  df-fib 33888
This theorem is referenced by:  fib2  33893  fib3  33894
  Copyright terms: Public domain W3C validator