| Step | Hyp | Ref
| Expression |
| 1 | | df-fib 34400 |
. . . 4
⊢ Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |
| 2 | 1 | fveq1i 6906 |
. . 3
⊢
(Fibci‘(𝑁 +
1)) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)) |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝑁 ∈ ℕ →
(Fibci‘(𝑁 + 1)) =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1))) |
| 4 | | nn0ex 12534 |
. . . 4
⊢
ℕ0 ∈ V |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ →
ℕ0 ∈ V) |
| 6 | | 0nn0 12543 |
. . . . 5
⊢ 0 ∈
ℕ0 |
| 7 | 6 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ℕ → 0 ∈
ℕ0) |
| 8 | | 1nn0 12544 |
. . . . 5
⊢ 1 ∈
ℕ0 |
| 9 | 8 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ℕ → 1 ∈
ℕ0) |
| 10 | 7, 9 | s2cld 14911 |
. . 3
⊢ (𝑁 ∈ ℕ →
〈“01”〉 ∈ Word ℕ0) |
| 11 | | eqid 2736 |
. . 3
⊢ (Word
ℕ0 ∩ (◡♯
“
(ℤ≥‘(♯‘〈“01”〉)))) =
(Word ℕ0 ∩ (◡♯ “
(ℤ≥‘(♯‘〈“01”〉)))) |
| 12 | | fiblem 34401 |
. . . 4
⊢ (𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0
∩ (◡♯ “
(ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 |
| 13 | 12 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0
∩ (◡♯ “
(ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0) |
| 14 | | eluzp1p1 12907 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 15 | | nnuz 12922 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 16 | 14, 15 | eleq2s 2858 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 17 | | s2len 14929 |
. . . . . 6
⊢
(♯‘〈“01”〉) = 2 |
| 18 | | 1p1e2 12392 |
. . . . . 6
⊢ (1 + 1) =
2 |
| 19 | 17, 18 | eqtr4i 2767 |
. . . . 5
⊢
(♯‘〈“01”〉) = (1 + 1) |
| 20 | 19 | fveq2i 6908 |
. . . 4
⊢
(ℤ≥‘(♯‘〈“01”〉))
= (ℤ≥‘(1 + 1)) |
| 21 | 16, 20 | eleqtrrdi 2851 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
(ℤ≥‘(♯‘〈“01”〉))) |
| 22 | 5, 10, 11, 13, 21 | sseqp1 34398 |
. 2
⊢ (𝑁 ∈ ℕ →
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)) = ((𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) −
1))))‘((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))) |
| 23 | | id 22 |
. . . . . . 7
⊢ (𝑤 = 𝑡 → 𝑤 = 𝑡) |
| 24 | | fveq2 6905 |
. . . . . . . 8
⊢ (𝑤 = 𝑡 → (♯‘𝑤) = (♯‘𝑡)) |
| 25 | 24 | oveq1d 7447 |
. . . . . . 7
⊢ (𝑤 = 𝑡 → ((♯‘𝑤) − 2) = ((♯‘𝑡) − 2)) |
| 26 | 23, 25 | fveq12d 6912 |
. . . . . 6
⊢ (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 2)) = (𝑡‘((♯‘𝑡) − 2))) |
| 27 | 24 | oveq1d 7447 |
. . . . . . 7
⊢ (𝑤 = 𝑡 → ((♯‘𝑤) − 1) = ((♯‘𝑡) − 1)) |
| 28 | 23, 27 | fveq12d 6912 |
. . . . . 6
⊢ (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 1)) = (𝑡‘((♯‘𝑡) − 1))) |
| 29 | 26, 28 | oveq12d 7450 |
. . . . 5
⊢ (𝑤 = 𝑡 → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1)))) |
| 30 | 29 | cbvmptv 5254 |
. . . 4
⊢ (𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1)))) |
| 31 | 30 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))) |
| 32 | | simpr 484 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) |
| 33 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))) |
| 34 | 33 | reseq1d 5995 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → (Fibci ↾
(0..^(𝑁 + 1))) =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) |
| 35 | 32, 34 | eqtr4d 2779 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) |
| 36 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) |
| 37 | 36 | fveq2d 6909 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
(♯‘𝑡) =
(♯‘(Fibci ↾ (0..^(𝑁 + 1))))) |
| 38 | 5, 10, 11, 13 | sseqf 34395 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ →
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) −
1))))):ℕ0⟶ℕ0) |
| 39 | 1 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))) |
| 40 | 39 | feq1d 6719 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ →
(Fibci:ℕ0⟶ℕ0 ↔
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) −
1))))):ℕ0⟶ℕ0)) |
| 41 | 38, 40 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ →
Fibci:ℕ0⟶ℕ0) |
| 42 | | nnnn0 12535 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 43 | 42, 9 | nn0addcld 12593 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ0) |
| 44 | 5, 41, 43 | subiwrdlen 34389 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
(♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
(♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1)) |
| 46 | 37, 45 | eqtrd 2776 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
(♯‘𝑡) = (𝑁 + 1)) |
| 47 | 46 | oveq1d 7447 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
((♯‘𝑡) −
2) = ((𝑁 + 1) −
2)) |
| 48 | | nncn 12275 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 49 | | 1cnd 11257 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
| 50 | | 2cnd 12345 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 2 ∈
ℂ) |
| 51 | 48, 49, 50 | addsubassd 11641 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 + (1 −
2))) |
| 52 | 48, 50, 49 | subsub2d 11650 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 + (1 −
2))) |
| 53 | | 2m1e1 12393 |
. . . . . . . . . . . 12
⊢ (2
− 1) = 1 |
| 54 | 53 | oveq2i 7443 |
. . . . . . . . . . 11
⊢ (𝑁 − (2 − 1)) = (𝑁 − 1) |
| 55 | 54 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 − 1)) |
| 56 | 51, 52, 55 | 3eqtr2d 2782 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 − 1)) |
| 57 | 56 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 2) = (𝑁 − 1)) |
| 58 | 47, 57 | eqtrd 2776 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
((♯‘𝑡) −
2) = (𝑁 −
1)) |
| 59 | 58 | fveq2d 6909 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (𝑡‘(𝑁 − 1))) |
| 60 | 36 | fveq1d 6907 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘(𝑁 − 1)) = ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1))) |
| 61 | | nnm1nn0 12569 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 62 | | peano2nn 12279 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
| 63 | | nnre 12274 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 64 | | 2re 12341 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
| 65 | 64 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 2 ∈
ℝ) |
| 66 | 63, 65 | readdcld 11291 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 + 2) ∈
ℝ) |
| 67 | | 1red 11263 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 1 ∈
ℝ) |
| 68 | | 2rp 13040 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 2 ∈
ℝ+) |
| 70 | 63, 69 | ltaddrpd 13111 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 2)) |
| 71 | 63, 66, 67, 70 | ltsub1dd 11876 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 2) −
1)) |
| 72 | 48, 50, 49 | addsubassd 11641 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + (2 −
1))) |
| 73 | 53 | oveq2i 7443 |
. . . . . . . . . . 11
⊢ (𝑁 + (2 − 1)) = (𝑁 + 1) |
| 74 | 72, 73 | eqtrdi 2792 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1)) |
| 75 | 71, 74 | breqtrd 5168 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 + 1)) |
| 76 | | elfzo0 13741 |
. . . . . . . . 9
⊢ ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝑁 − 1) ∈
ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 − 1) < (𝑁 + 1))) |
| 77 | 61, 62, 75, 76 | syl3anbrc 1343 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^(𝑁 + 1))) |
| 78 | 77 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑁 − 1) ∈ (0..^(𝑁 + 1))) |
| 79 | | fvres 6924 |
. . . . . . 7
⊢ ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) → ((Fibci ↾
(0..^(𝑁 + 1)))‘(𝑁 − 1)) =
(Fibci‘(𝑁 −
1))) |
| 80 | 78, 79 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾
(0..^(𝑁 + 1)))‘(𝑁 − 1)) =
(Fibci‘(𝑁 −
1))) |
| 81 | 59, 60, 80 | 3eqtrd 2780 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) =
(Fibci‘(𝑁 −
1))) |
| 82 | 46 | oveq1d 7447 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
((♯‘𝑡) −
1) = ((𝑁 + 1) −
1)) |
| 83 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈
ℕ) |
| 84 | 83 | nncnd 12283 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈
ℂ) |
| 85 | | 1cnd 11257 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 1 ∈
ℂ) |
| 86 | 84, 85 | pncand 11622 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 1) = 𝑁) |
| 87 | 82, 86 | eqtrd 2776 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) →
((♯‘𝑡) −
1) = 𝑁) |
| 88 | 87 | fveq2d 6909 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡‘𝑁)) |
| 89 | 36 | fveq1d 6907 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘𝑁) = ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁)) |
| 90 | | nn0fz0 13666 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) |
| 91 | 42, 90 | sylib 218 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0...𝑁)) |
| 92 | | nnz 12636 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 93 | | fzval3 13774 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
(0...𝑁) = (0..^(𝑁 + 1))) |
| 94 | 92, 93 | syl 17 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(0...𝑁) = (0..^(𝑁 + 1))) |
| 95 | 91, 94 | eleqtrd 2842 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0..^(𝑁 + 1))) |
| 96 | 95 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ (0..^(𝑁 + 1))) |
| 97 | | fvres 6924 |
. . . . . . 7
⊢ (𝑁 ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁)) |
| 98 | 96, 97 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾
(0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁)) |
| 99 | 88, 89, 98 | 3eqtrd 2780 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) =
(Fibci‘𝑁)) |
| 100 | 81, 99 | oveq12d 7450 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) =
((Fibci‘(𝑁 −
1)) + (Fibci‘𝑁))) |
| 101 | 35, 100 | syldan 591 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑡 =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) =
((Fibci‘(𝑁 −
1)) + (Fibci‘𝑁))) |
| 102 | 39 | reseq1d 5995 |
. . . 4
⊢ (𝑁 ∈ ℕ → (Fibci
↾ (0..^(𝑁 + 1))) =
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) |
| 103 | 5, 41, 43 | subiwrd 34388 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (Fibci
↾ (0..^(𝑁 + 1)))
∈ Word ℕ0) |
| 104 | | ovex 7465 |
. . . . . . . . 9
⊢
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ∈ V |
| 105 | 1, 104 | eqeltri 2836 |
. . . . . . . 8
⊢ Fibci
∈ V |
| 106 | 105 | resex 6046 |
. . . . . . 7
⊢ (Fibci
↾ (0..^(𝑁 + 1)))
∈ V |
| 107 | 106 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (Fibci
↾ (0..^(𝑁 + 1)))
∈ V) |
| 108 | 18 | fveq2i 6908 |
. . . . . . . 8
⊢
(ℤ≥‘(1 + 1)) =
(ℤ≥‘2) |
| 109 | 16, 108 | eleqtrdi 2850 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
(ℤ≥‘2)) |
| 110 | 44, 109 | eqeltrd 2840 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈
(ℤ≥‘2)) |
| 111 | | hashf 14378 |
. . . . . . 7
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
| 112 | | ffn 6735 |
. . . . . . 7
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → ♯
Fn V) |
| 113 | | elpreima 7077 |
. . . . . . 7
⊢ (♯
Fn V → ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (◡♯ “
(ℤ≥‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧
(♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈
(ℤ≥‘2)))) |
| 114 | 111, 112,
113 | mp2b 10 |
. . . . . 6
⊢ ((Fibci
↾ (0..^(𝑁 + 1)))
∈ (◡♯ “
(ℤ≥‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧
(♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈
(ℤ≥‘2))) |
| 115 | 107, 110,
114 | sylanbrc 583 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (Fibci
↾ (0..^(𝑁 + 1)))
∈ (◡♯ “
(ℤ≥‘2))) |
| 116 | 103, 115 | elind 4199 |
. . . 4
⊢ (𝑁 ∈ ℕ → (Fibci
↾ (0..^(𝑁 + 1)))
∈ (Word ℕ0 ∩ (◡♯ “
(ℤ≥‘2)))) |
| 117 | 102, 116 | eqeltrrd 2841 |
. . 3
⊢ (𝑁 ∈ ℕ →
((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))) ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2)))) |
| 118 | | ovex 7465 |
. . . 4
⊢
((Fibci‘(𝑁
− 1)) + (Fibci‘𝑁)) ∈ V |
| 119 | 118 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ →
((Fibci‘(𝑁 −
1)) + (Fibci‘𝑁))
∈ V) |
| 120 | 31, 101, 117, 119 | fvmptd 7022 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑤 ∈ (Word
ℕ0 ∩ (◡♯
“ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) −
1))))‘((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) = ((Fibci‘(𝑁 − 1)) +
(Fibci‘𝑁))) |
| 121 | 3, 22, 120 | 3eqtrd 2780 |
1
⊢ (𝑁 ∈ ℕ →
(Fibci‘(𝑁 + 1)) =
((Fibci‘(𝑁 −
1)) + (Fibci‘𝑁))) |