Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fibp1 Structured version   Visualization version   GIF version

Theorem fibp1 34375
Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fibp1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))

Proof of Theorem fibp1
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fib 34371 . . . 4 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6823 . . 3 (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1))
32a1i 11 . 2 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)))
4 nn0ex 12390 . . . 4 0 ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℕ → ℕ0 ∈ V)
6 0nn0 12399 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
8 1nn0 12400 . . . . 5 1 ∈ ℕ0
98a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
107, 9s2cld 14778 . . 3 (𝑁 ∈ ℕ → ⟨“01”⟩ ∈ Word ℕ0)
11 eqid 2729 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
12 fiblem 34372 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1312a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
14 eluzp1p1 12763 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
15 nnuz 12778 . . . . 5 ℕ = (ℤ‘1)
1614, 15eleq2s 2846 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
17 s2len 14796 . . . . . 6 (♯‘⟨“01”⟩) = 2
18 1p1e2 12248 . . . . . 6 (1 + 1) = 2
1917, 18eqtr4i 2755 . . . . 5 (♯‘⟨“01”⟩) = (1 + 1)
2019fveq2i 6825 . . . 4 (ℤ‘(♯‘⟨“01”⟩)) = (ℤ‘(1 + 1))
2116, 20eleqtrrdi 2839 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(♯‘⟨“01”⟩)))
225, 10, 11, 13, 21sseqp1 34369 . 2 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)) = ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))))
23 id 22 . . . . . . 7 (𝑤 = 𝑡𝑤 = 𝑡)
24 fveq2 6822 . . . . . . . 8 (𝑤 = 𝑡 → (♯‘𝑤) = (♯‘𝑡))
2524oveq1d 7364 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 2) = ((♯‘𝑡) − 2))
2623, 25fveq12d 6829 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 2)) = (𝑡‘((♯‘𝑡) − 2)))
2724oveq1d 7364 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 1) = ((♯‘𝑡) − 1))
2823, 27fveq12d 6829 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 1)) = (𝑡‘((♯‘𝑡) − 1)))
2926, 28oveq12d 7367 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3029cbvmptv 5196 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3130a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1)))))
32 simpr 484 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
331a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
3433reseq1d 5929 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
3532, 34eqtr4d 2767 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
36 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
3736fveq2d 6826 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (♯‘(Fibci ↾ (0..^(𝑁 + 1)))))
385, 10, 11, 13sseqf 34366 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0)
391a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
4039feq1d 6634 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (Fibci:ℕ0⟶ℕ0 ↔ (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0))
4138, 40mpbird 257 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Fibci:ℕ0⟶ℕ0)
42 nnnn0 12391 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4342, 9nn0addcld 12449 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
445, 41, 43subiwrdlen 34360 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4544adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4637, 45eqtrd 2764 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (𝑁 + 1))
4746oveq1d 7364 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = ((𝑁 + 1) − 2))
48 nncn 12136 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49 1cnd 11110 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
50 2cnd 12206 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5148, 49, 50addsubassd 11495 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 + (1 − 2)))
5248, 50, 49subsub2d 11504 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 + (1 − 2)))
53 2m1e1 12249 . . . . . . . . . . . 12 (2 − 1) = 1
5453oveq2i 7360 . . . . . . . . . . 11 (𝑁 − (2 − 1)) = (𝑁 − 1)
5554a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 − 1))
5651, 52, 553eqtr2d 2770 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 − 1))
5756adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 2) = (𝑁 − 1))
5847, 57eqtrd 2764 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = (𝑁 − 1))
5958fveq2d 6826 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (𝑡‘(𝑁 − 1)))
6036fveq1d 6824 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘(𝑁 − 1)) = ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)))
61 nnm1nn0 12425 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
62 peano2nn 12140 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
63 nnre 12135 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64 2re 12202 . . . . . . . . . . . . 13 2 ∈ ℝ
6564a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
6663, 65readdcld 11144 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℝ)
67 1red 11116 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℝ)
68 2rp 12898 . . . . . . . . . . . . 13 2 ∈ ℝ+
6968a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7063, 69ltaddrpd 12970 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 2))
7163, 66, 67, 70ltsub1dd 11732 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 2) − 1))
7248, 50, 49addsubassd 11495 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
7353oveq2i 7360 . . . . . . . . . . 11 (𝑁 + (2 − 1)) = (𝑁 + 1)
7472, 73eqtrdi 2780 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
7571, 74breqtrd 5118 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 + 1))
76 elfzo0 13603 . . . . . . . . 9 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 − 1) < (𝑁 + 1)))
7761, 62, 75, 76syl3anbrc 1344 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
7877adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
79 fvres 6841 . . . . . . 7 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8078, 79syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8159, 60, 803eqtrd 2768 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (Fibci‘(𝑁 − 1)))
8246oveq1d 7364 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = ((𝑁 + 1) − 1))
83 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ)
8483nncnd 12144 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℂ)
85 1cnd 11110 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 1 ∈ ℂ)
8684, 85pncand 11476 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 1) = 𝑁)
8782, 86eqtrd 2764 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = 𝑁)
8887fveq2d 6826 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡𝑁))
8936fveq1d 6824 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡𝑁) = ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁))
90 nn0fz0 13528 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9142, 90sylib 218 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ (0...𝑁))
92 nnz 12492 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
93 fzval3 13637 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9492, 93syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...𝑁) = (0..^(𝑁 + 1)))
9591, 94eleqtrd 2830 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (0..^(𝑁 + 1)))
9695adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ (0..^(𝑁 + 1)))
97 fvres 6841 . . . . . . 7 (𝑁 ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9896, 97syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9988, 89, 983eqtrd 2768 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (Fibci‘𝑁))
10081, 99oveq12d 7367 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10135, 100syldan 591 . . 3 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10239reseq1d 5929 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
1035, 41, 43subiwrd 34359 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ Word ℕ0)
104 ovex 7382 . . . . . . . . 9 (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ∈ V
1051, 104eqeltri 2824 . . . . . . . 8 Fibci ∈ V
106105resex 5980 . . . . . . 7 (Fibci ↾ (0..^(𝑁 + 1))) ∈ V
107106a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ V)
10818fveq2i 6825 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
10916, 108eleqtrdi 2838 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘2))
11044, 109eqeltrd 2828 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))
111 hashf 14245 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
112 ffn 6652 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
113 elpreima 6992 . . . . . . 7 (♯ Fn V → ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))))
114111, 112, 113mp2b 10 . . . . . 6 ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2)))
115107, 110, 114sylanbrc 583 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)))
116103, 115elind 4151 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
117102, 116eqeltrrd 2829 . . 3 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
118 ovex 7382 . . . 4 ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V
119118a1i 11 . . 3 (𝑁 ∈ ℕ → ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V)
12031, 101, 117, 119fvmptd 6937 . 2 (𝑁 ∈ ℕ → ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
1213, 22, 1203eqtrd 2768 1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  cin 3902  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  cres 5621  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012  +∞cpnf 11146   < clt 11149  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420  ⟨“cs2 14748  seqstrcsseq 34357  Fibcicfib 34370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-s2 14755  df-sseq 34358  df-fib 34371
This theorem is referenced by:  fib2  34376  fib3  34377  fib4  34378  fib5  34379  fib6  34380
  Copyright terms: Public domain W3C validator