Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fibp1 Structured version   Visualization version   GIF version

Theorem fibp1 33001
Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fibp1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))

Proof of Theorem fibp1
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fib 32997 . . . 4 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6843 . . 3 (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1))
32a1i 11 . 2 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)))
4 nn0ex 12419 . . . 4 0 ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℕ → ℕ0 ∈ V)
6 0nn0 12428 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
8 1nn0 12429 . . . . 5 1 ∈ ℕ0
98a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
107, 9s2cld 14760 . . 3 (𝑁 ∈ ℕ → ⟨“01”⟩ ∈ Word ℕ0)
11 eqid 2736 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
12 fiblem 32998 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1312a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
14 eluzp1p1 12791 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
15 nnuz 12806 . . . . 5 ℕ = (ℤ‘1)
1614, 15eleq2s 2856 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
17 s2len 14778 . . . . . 6 (♯‘⟨“01”⟩) = 2
18 1p1e2 12278 . . . . . 6 (1 + 1) = 2
1917, 18eqtr4i 2767 . . . . 5 (♯‘⟨“01”⟩) = (1 + 1)
2019fveq2i 6845 . . . 4 (ℤ‘(♯‘⟨“01”⟩)) = (ℤ‘(1 + 1))
2116, 20eleqtrrdi 2849 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(♯‘⟨“01”⟩)))
225, 10, 11, 13, 21sseqp1 32995 . 2 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)) = ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))))
23 id 22 . . . . . . 7 (𝑤 = 𝑡𝑤 = 𝑡)
24 fveq2 6842 . . . . . . . 8 (𝑤 = 𝑡 → (♯‘𝑤) = (♯‘𝑡))
2524oveq1d 7372 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 2) = ((♯‘𝑡) − 2))
2623, 25fveq12d 6849 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 2)) = (𝑡‘((♯‘𝑡) − 2)))
2724oveq1d 7372 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 1) = ((♯‘𝑡) − 1))
2823, 27fveq12d 6849 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 1)) = (𝑡‘((♯‘𝑡) − 1)))
2926, 28oveq12d 7375 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3029cbvmptv 5218 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3130a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1)))))
32 simpr 485 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
331a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
3433reseq1d 5936 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
3532, 34eqtr4d 2779 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
36 simpr 485 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
3736fveq2d 6846 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (♯‘(Fibci ↾ (0..^(𝑁 + 1)))))
385, 10, 11, 13sseqf 32992 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0)
391a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
4039feq1d 6653 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (Fibci:ℕ0⟶ℕ0 ↔ (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0))
4138, 40mpbird 256 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Fibci:ℕ0⟶ℕ0)
42 nnnn0 12420 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4342, 9nn0addcld 12477 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
445, 41, 43subiwrdlen 32986 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4544adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4637, 45eqtrd 2776 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (𝑁 + 1))
4746oveq1d 7372 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = ((𝑁 + 1) − 2))
48 nncn 12161 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49 1cnd 11150 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
50 2cnd 12231 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5148, 49, 50addsubassd 11532 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 + (1 − 2)))
5248, 50, 49subsub2d 11541 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 + (1 − 2)))
53 2m1e1 12279 . . . . . . . . . . . 12 (2 − 1) = 1
5453oveq2i 7368 . . . . . . . . . . 11 (𝑁 − (2 − 1)) = (𝑁 − 1)
5554a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 − 1))
5651, 52, 553eqtr2d 2782 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 − 1))
5756adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 2) = (𝑁 − 1))
5847, 57eqtrd 2776 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = (𝑁 − 1))
5958fveq2d 6846 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (𝑡‘(𝑁 − 1)))
6036fveq1d 6844 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘(𝑁 − 1)) = ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)))
61 nnm1nn0 12454 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
62 peano2nn 12165 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
63 nnre 12160 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64 2re 12227 . . . . . . . . . . . . 13 2 ∈ ℝ
6564a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
6663, 65readdcld 11184 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℝ)
67 1red 11156 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℝ)
68 2rp 12920 . . . . . . . . . . . . 13 2 ∈ ℝ+
6968a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7063, 69ltaddrpd 12990 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 2))
7163, 66, 67, 70ltsub1dd 11767 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 2) − 1))
7248, 50, 49addsubassd 11532 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
7353oveq2i 7368 . . . . . . . . . . 11 (𝑁 + (2 − 1)) = (𝑁 + 1)
7472, 73eqtrdi 2792 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
7571, 74breqtrd 5131 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 + 1))
76 elfzo0 13613 . . . . . . . . 9 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 − 1) < (𝑁 + 1)))
7761, 62, 75, 76syl3anbrc 1343 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
7877adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
79 fvres 6861 . . . . . . 7 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8078, 79syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8159, 60, 803eqtrd 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (Fibci‘(𝑁 − 1)))
8246oveq1d 7372 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = ((𝑁 + 1) − 1))
83 simpl 483 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ)
8483nncnd 12169 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℂ)
85 1cnd 11150 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 1 ∈ ℂ)
8684, 85pncand 11513 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 1) = 𝑁)
8782, 86eqtrd 2776 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = 𝑁)
8887fveq2d 6846 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡𝑁))
8936fveq1d 6844 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡𝑁) = ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁))
90 nn0fz0 13539 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9142, 90sylib 217 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ (0...𝑁))
92 nnz 12520 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
93 fzval3 13641 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9492, 93syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...𝑁) = (0..^(𝑁 + 1)))
9591, 94eleqtrd 2840 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (0..^(𝑁 + 1)))
9695adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ (0..^(𝑁 + 1)))
97 fvres 6861 . . . . . . 7 (𝑁 ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9896, 97syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9988, 89, 983eqtrd 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (Fibci‘𝑁))
10081, 99oveq12d 7375 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10135, 100syldan 591 . . 3 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10239reseq1d 5936 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
1035, 41, 43subiwrd 32985 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ Word ℕ0)
104 ovex 7390 . . . . . . . . 9 (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ∈ V
1051, 104eqeltri 2834 . . . . . . . 8 Fibci ∈ V
106105resex 5985 . . . . . . 7 (Fibci ↾ (0..^(𝑁 + 1))) ∈ V
107106a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ V)
10818fveq2i 6845 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
10916, 108eleqtrdi 2848 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘2))
11044, 109eqeltrd 2838 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))
111 hashf 14238 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
112 ffn 6668 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
113 elpreima 7008 . . . . . . 7 (♯ Fn V → ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))))
114111, 112, 113mp2b 10 . . . . . 6 ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2)))
115107, 110, 114sylanbrc 583 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)))
116103, 115elind 4154 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
117102, 116eqeltrrd 2839 . . 3 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
118 ovex 7390 . . . 4 ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V
119118a1i 11 . . 3 (𝑁 ∈ ℕ → ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V)
12031, 101, 117, 119fvmptd 6955 . 2 (𝑁 ∈ ℕ → ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
1213, 22, 1203eqtrd 2780 1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  cin 3909  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  cres 5635  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186   < clt 11189  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402  ⟨“cs2 14730  seqstrcsseq 32983  Fibcicfib 32996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559  df-s2 14737  df-sseq 32984  df-fib 32997
This theorem is referenced by:  fib2  33002  fib3  33003  fib4  33004  fib5  33005  fib6  33006
  Copyright terms: Public domain W3C validator