Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fibp1 Structured version   Visualization version   GIF version

Theorem fibp1 34392
Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fibp1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))

Proof of Theorem fibp1
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fib 34388 . . . 4 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6859 . . 3 (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1))
32a1i 11 . 2 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)))
4 nn0ex 12448 . . . 4 0 ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℕ → ℕ0 ∈ V)
6 0nn0 12457 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
8 1nn0 12458 . . . . 5 1 ∈ ℕ0
98a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
107, 9s2cld 14837 . . 3 (𝑁 ∈ ℕ → ⟨“01”⟩ ∈ Word ℕ0)
11 eqid 2729 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
12 fiblem 34389 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1312a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
14 eluzp1p1 12821 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
15 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
1614, 15eleq2s 2846 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
17 s2len 14855 . . . . . 6 (♯‘⟨“01”⟩) = 2
18 1p1e2 12306 . . . . . 6 (1 + 1) = 2
1917, 18eqtr4i 2755 . . . . 5 (♯‘⟨“01”⟩) = (1 + 1)
2019fveq2i 6861 . . . 4 (ℤ‘(♯‘⟨“01”⟩)) = (ℤ‘(1 + 1))
2116, 20eleqtrrdi 2839 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(♯‘⟨“01”⟩)))
225, 10, 11, 13, 21sseqp1 34386 . 2 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)) = ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))))
23 id 22 . . . . . . 7 (𝑤 = 𝑡𝑤 = 𝑡)
24 fveq2 6858 . . . . . . . 8 (𝑤 = 𝑡 → (♯‘𝑤) = (♯‘𝑡))
2524oveq1d 7402 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 2) = ((♯‘𝑡) − 2))
2623, 25fveq12d 6865 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 2)) = (𝑡‘((♯‘𝑡) − 2)))
2724oveq1d 7402 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 1) = ((♯‘𝑡) − 1))
2823, 27fveq12d 6865 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 1)) = (𝑡‘((♯‘𝑡) − 1)))
2926, 28oveq12d 7405 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3029cbvmptv 5211 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3130a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1)))))
32 simpr 484 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
331a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
3433reseq1d 5949 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
3532, 34eqtr4d 2767 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
36 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
3736fveq2d 6862 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (♯‘(Fibci ↾ (0..^(𝑁 + 1)))))
385, 10, 11, 13sseqf 34383 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0)
391a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
4039feq1d 6670 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (Fibci:ℕ0⟶ℕ0 ↔ (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0))
4138, 40mpbird 257 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Fibci:ℕ0⟶ℕ0)
42 nnnn0 12449 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4342, 9nn0addcld 12507 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
445, 41, 43subiwrdlen 34377 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4544adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4637, 45eqtrd 2764 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (𝑁 + 1))
4746oveq1d 7402 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = ((𝑁 + 1) − 2))
48 nncn 12194 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49 1cnd 11169 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
50 2cnd 12264 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5148, 49, 50addsubassd 11553 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 + (1 − 2)))
5248, 50, 49subsub2d 11562 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 + (1 − 2)))
53 2m1e1 12307 . . . . . . . . . . . 12 (2 − 1) = 1
5453oveq2i 7398 . . . . . . . . . . 11 (𝑁 − (2 − 1)) = (𝑁 − 1)
5554a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 − 1))
5651, 52, 553eqtr2d 2770 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 − 1))
5756adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 2) = (𝑁 − 1))
5847, 57eqtrd 2764 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = (𝑁 − 1))
5958fveq2d 6862 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (𝑡‘(𝑁 − 1)))
6036fveq1d 6860 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘(𝑁 − 1)) = ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)))
61 nnm1nn0 12483 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
62 peano2nn 12198 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
63 nnre 12193 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64 2re 12260 . . . . . . . . . . . . 13 2 ∈ ℝ
6564a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
6663, 65readdcld 11203 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℝ)
67 1red 11175 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℝ)
68 2rp 12956 . . . . . . . . . . . . 13 2 ∈ ℝ+
6968a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7063, 69ltaddrpd 13028 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 2))
7163, 66, 67, 70ltsub1dd 11790 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 2) − 1))
7248, 50, 49addsubassd 11553 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
7353oveq2i 7398 . . . . . . . . . . 11 (𝑁 + (2 − 1)) = (𝑁 + 1)
7472, 73eqtrdi 2780 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
7571, 74breqtrd 5133 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 + 1))
76 elfzo0 13661 . . . . . . . . 9 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 − 1) < (𝑁 + 1)))
7761, 62, 75, 76syl3anbrc 1344 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
7877adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
79 fvres 6877 . . . . . . 7 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8078, 79syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8159, 60, 803eqtrd 2768 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (Fibci‘(𝑁 − 1)))
8246oveq1d 7402 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = ((𝑁 + 1) − 1))
83 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ)
8483nncnd 12202 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℂ)
85 1cnd 11169 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 1 ∈ ℂ)
8684, 85pncand 11534 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 1) = 𝑁)
8782, 86eqtrd 2764 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = 𝑁)
8887fveq2d 6862 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡𝑁))
8936fveq1d 6860 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡𝑁) = ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁))
90 nn0fz0 13586 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9142, 90sylib 218 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ (0...𝑁))
92 nnz 12550 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
93 fzval3 13695 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9492, 93syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...𝑁) = (0..^(𝑁 + 1)))
9591, 94eleqtrd 2830 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (0..^(𝑁 + 1)))
9695adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ (0..^(𝑁 + 1)))
97 fvres 6877 . . . . . . 7 (𝑁 ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9896, 97syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9988, 89, 983eqtrd 2768 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (Fibci‘𝑁))
10081, 99oveq12d 7405 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10135, 100syldan 591 . . 3 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10239reseq1d 5949 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
1035, 41, 43subiwrd 34376 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ Word ℕ0)
104 ovex 7420 . . . . . . . . 9 (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ∈ V
1051, 104eqeltri 2824 . . . . . . . 8 Fibci ∈ V
106105resex 6000 . . . . . . 7 (Fibci ↾ (0..^(𝑁 + 1))) ∈ V
107106a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ V)
10818fveq2i 6861 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
10916, 108eleqtrdi 2838 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘2))
11044, 109eqeltrd 2828 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))
111 hashf 14303 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
112 ffn 6688 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
113 elpreima 7030 . . . . . . 7 (♯ Fn V → ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))))
114111, 112, 113mp2b 10 . . . . . 6 ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2)))
115107, 110, 114sylanbrc 583 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)))
116103, 115elind 4163 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
117102, 116eqeltrrd 2829 . . 3 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
118 ovex 7420 . . . 4 ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V
119118a1i 11 . . 3 (𝑁 ∈ ℕ → ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V)
12031, 101, 117, 119fvmptd 6975 . 2 (𝑁 ∈ ℕ → ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
1213, 22, 1203eqtrd 2768 1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  cin 3913  {csn 4589   class class class wbr 5107  cmpt 5188  ccnv 5637  cres 5640  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205   < clt 11208  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs2 14807  seqstrcsseq 34374  Fibcicfib 34387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-s2 14814  df-sseq 34375  df-fib 34388
This theorem is referenced by:  fib2  34393  fib3  34394  fib4  34395  fib5  34396  fib6  34397
  Copyright terms: Public domain W3C validator