Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fibp1 Structured version   Visualization version   GIF version

Theorem fibp1 34404
Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.)
Assertion
Ref Expression
fibp1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))

Proof of Theorem fibp1
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fib 34400 . . . 4 Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
21fveq1i 6906 . . 3 (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1))
32a1i 11 . 2 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)))
4 nn0ex 12534 . . . 4 0 ∈ V
54a1i 11 . . 3 (𝑁 ∈ ℕ → ℕ0 ∈ V)
6 0nn0 12543 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 (𝑁 ∈ ℕ → 0 ∈ ℕ0)
8 1nn0 12544 . . . . 5 1 ∈ ℕ0
98a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
107, 9s2cld 14911 . . 3 (𝑁 ∈ ℕ → ⟨“01”⟩ ∈ Word ℕ0)
11 eqid 2736 . . 3 (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩)))) = (Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))
12 fiblem 34401 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0
1312a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (♯ “ (ℤ‘(♯‘⟨“01”⟩))))⟶ℕ0)
14 eluzp1p1 12907 . . . . 5 (𝑁 ∈ (ℤ‘1) → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
15 nnuz 12922 . . . . 5 ℕ = (ℤ‘1)
1614, 15eleq2s 2858 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(1 + 1)))
17 s2len 14929 . . . . . 6 (♯‘⟨“01”⟩) = 2
18 1p1e2 12392 . . . . . 6 (1 + 1) = 2
1917, 18eqtr4i 2767 . . . . 5 (♯‘⟨“01”⟩) = (1 + 1)
2019fveq2i 6908 . . . 4 (ℤ‘(♯‘⟨“01”⟩)) = (ℤ‘(1 + 1))
2116, 20eleqtrrdi 2851 . . 3 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘(♯‘⟨“01”⟩)))
225, 10, 11, 13, 21sseqp1 34398 . 2 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))‘(𝑁 + 1)) = ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))))
23 id 22 . . . . . . 7 (𝑤 = 𝑡𝑤 = 𝑡)
24 fveq2 6905 . . . . . . . 8 (𝑤 = 𝑡 → (♯‘𝑤) = (♯‘𝑡))
2524oveq1d 7447 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 2) = ((♯‘𝑡) − 2))
2623, 25fveq12d 6912 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 2)) = (𝑡‘((♯‘𝑡) − 2)))
2724oveq1d 7447 . . . . . . 7 (𝑤 = 𝑡 → ((♯‘𝑤) − 1) = ((♯‘𝑡) − 1))
2823, 27fveq12d 6912 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘((♯‘𝑤) − 1)) = (𝑡‘((♯‘𝑡) − 1)))
2926, 28oveq12d 7450 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))) = ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3029cbvmptv 5254 . . . 4 (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))))
3130a1i 11 . . 3 (𝑁 ∈ ℕ → (𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))) = (𝑡 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1)))))
32 simpr 484 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
331a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
3433reseq1d 5995 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
3532, 34eqtr4d 2779 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
36 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑡 = (Fibci ↾ (0..^(𝑁 + 1))))
3736fveq2d 6909 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (♯‘(Fibci ↾ (0..^(𝑁 + 1)))))
385, 10, 11, 13sseqf 34395 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0)
391a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))))
4039feq1d 6719 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (Fibci:ℕ0⟶ℕ0 ↔ (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))):ℕ0⟶ℕ0))
4138, 40mpbird 257 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → Fibci:ℕ0⟶ℕ0)
42 nnnn0 12535 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4342, 9nn0addcld 12593 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
445, 41, 43subiwrdlen 34389 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4544adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
4637, 45eqtrd 2776 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (♯‘𝑡) = (𝑁 + 1))
4746oveq1d 7447 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = ((𝑁 + 1) − 2))
48 nncn 12275 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
49 1cnd 11257 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
50 2cnd 12345 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℂ)
5148, 49, 50addsubassd 11641 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 + (1 − 2)))
5248, 50, 49subsub2d 11650 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 + (1 − 2)))
53 2m1e1 12393 . . . . . . . . . . . 12 (2 − 1) = 1
5453oveq2i 7443 . . . . . . . . . . 11 (𝑁 − (2 − 1)) = (𝑁 − 1)
5554a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − (2 − 1)) = (𝑁 − 1))
5651, 52, 553eqtr2d 2782 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 + 1) − 2) = (𝑁 − 1))
5756adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 2) = (𝑁 − 1))
5847, 57eqtrd 2776 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 2) = (𝑁 − 1))
5958fveq2d 6909 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (𝑡‘(𝑁 − 1)))
6036fveq1d 6907 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘(𝑁 − 1)) = ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)))
61 nnm1nn0 12569 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
62 peano2nn 12279 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
63 nnre 12274 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64 2re 12341 . . . . . . . . . . . . 13 2 ∈ ℝ
6564a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
6663, 65readdcld 11291 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℝ)
67 1red 11263 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℝ)
68 2rp 13040 . . . . . . . . . . . . 13 2 ∈ ℝ+
6968a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7063, 69ltaddrpd 13111 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 2))
7163, 66, 67, 70ltsub1dd 11876 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 2) − 1))
7248, 50, 49addsubassd 11641 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
7353oveq2i 7443 . . . . . . . . . . 11 (𝑁 + (2 − 1)) = (𝑁 + 1)
7472, 73eqtrdi 2792 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
7571, 74breqtrd 5168 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) < (𝑁 + 1))
76 elfzo0 13741 . . . . . . . . 9 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝑁 − 1) < (𝑁 + 1)))
7761, 62, 75, 76syl3anbrc 1343 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
7877adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑁 − 1) ∈ (0..^(𝑁 + 1)))
79 fvres 6924 . . . . . . 7 ((𝑁 − 1) ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8078, 79syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘(𝑁 − 1)) = (Fibci‘(𝑁 − 1)))
8159, 60, 803eqtrd 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 2)) = (Fibci‘(𝑁 − 1)))
8246oveq1d 7447 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = ((𝑁 + 1) − 1))
83 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ)
8483nncnd 12283 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℂ)
85 1cnd 11257 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 1 ∈ ℂ)
8684, 85pncand 11622 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑁 + 1) − 1) = 𝑁)
8782, 86eqtrd 2776 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((♯‘𝑡) − 1) = 𝑁)
8887fveq2d 6909 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (𝑡𝑁))
8936fveq1d 6907 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡𝑁) = ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁))
90 nn0fz0 13666 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9142, 90sylib 218 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ (0...𝑁))
92 nnz 12636 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
93 fzval3 13774 . . . . . . . . . 10 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9492, 93syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (0...𝑁) = (0..^(𝑁 + 1)))
9591, 94eleqtrd 2842 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (0..^(𝑁 + 1)))
9695adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → 𝑁 ∈ (0..^(𝑁 + 1)))
97 fvres 6924 . . . . . . 7 (𝑁 ∈ (0..^(𝑁 + 1)) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9896, 97syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((Fibci ↾ (0..^(𝑁 + 1)))‘𝑁) = (Fibci‘𝑁))
9988, 89, 983eqtrd 2780 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → (𝑡‘((♯‘𝑡) − 1)) = (Fibci‘𝑁))
10081, 99oveq12d 7450 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑡 = (Fibci ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10135, 100syldan 591 . . 3 ((𝑁 ∈ ℕ ∧ 𝑡 = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) → ((𝑡‘((♯‘𝑡) − 2)) + (𝑡‘((♯‘𝑡) − 1))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
10239reseq1d 5995 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) = ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))))
1035, 41, 43subiwrd 34388 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ Word ℕ0)
104 ovex 7465 . . . . . . . . 9 (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ∈ V
1051, 104eqeltri 2836 . . . . . . . 8 Fibci ∈ V
106105resex 6046 . . . . . . 7 (Fibci ↾ (0..^(𝑁 + 1))) ∈ V
107106a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ V)
10818fveq2i 6908 . . . . . . . 8 (ℤ‘(1 + 1)) = (ℤ‘2)
10916, 108eleqtrdi 2850 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ‘2))
11044, 109eqeltrd 2840 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))
111 hashf 14378 . . . . . . 7 ♯:V⟶(ℕ0 ∪ {+∞})
112 ffn 6735 . . . . . . 7 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
113 elpreima 7077 . . . . . . 7 (♯ Fn V → ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2))))
114111, 112, 113mp2b 10 . . . . . 6 ((Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)) ↔ ((Fibci ↾ (0..^(𝑁 + 1))) ∈ V ∧ (♯‘(Fibci ↾ (0..^(𝑁 + 1)))) ∈ (ℤ‘2)))
115107, 110, 114sylanbrc 583 . . . . 5 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (♯ “ (ℤ‘2)))
116103, 115elind 4199 . . . 4 (𝑁 ∈ ℕ → (Fibci ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
117102, 116eqeltrrd 2841 . . 3 (𝑁 ∈ ℕ → ((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1))) ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))))
118 ovex 7465 . . . 4 ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V
119118a1i 11 . . 3 (𝑁 ∈ ℕ → ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)) ∈ V)
12031, 101, 117, 119fvmptd 7022 . 2 (𝑁 ∈ ℕ → ((𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))‘((⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) ↾ (0..^(𝑁 + 1)))) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
1213, 22, 1203eqtrd 2780 1 (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  cun 3948  cin 3949  {csn 4625   class class class wbr 5142  cmpt 5224  ccnv 5683  cres 5686  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157   + caddc 11159  +∞cpnf 11293   < clt 11296  cmin 11493  cn 12267  2c2 12322  0cn0 12528  cz 12615  cuz 12879  +crp 13035  ...cfz 13548  ..^cfzo 13695  chash 14370  Word cword 14553  ⟨“cs2 14881  seqstrcsseq 34386  Fibcicfib 34399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-s2 14888  df-sseq 34387  df-fib 34400
This theorem is referenced by:  fib2  34405  fib3  34406  fib4  34407  fib5  34408  fib6  34409
  Copyright terms: Public domain W3C validator