MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fl Structured version   Visualization version   GIF version

Definition df-fl 13521
Description: Define the floor (greatest integer less than or equal to) function. See flval 13523 for its value, fllelt 13526 for its basic property, and flcl 13524 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 28820).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 13519 . 2 class
2 vx . . 3 setvar 𝑥
3 cr 10879 . . 3 class
4 vy . . . . . . 7 setvar 𝑦
54cv 1538 . . . . . 6 class 𝑦
62cv 1538 . . . . . 6 class 𝑥
7 cle 11019 . . . . . 6 class
85, 6, 7wbr 5075 . . . . 5 wff 𝑦𝑥
9 c1 10881 . . . . . . 7 class 1
10 caddc 10883 . . . . . . 7 class +
115, 9, 10co 7284 . . . . . 6 class (𝑦 + 1)
12 clt 11018 . . . . . 6 class <
136, 11, 12wbr 5075 . . . . 5 wff 𝑥 < (𝑦 + 1)
148, 13wa 396 . . . 4 wff (𝑦𝑥𝑥 < (𝑦 + 1))
15 cz 12328 . . . 4 class
1614, 4, 15crio 7240 . . 3 class (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1)))
172, 3, 16cmpt 5158 . 2 class (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
181, 17wceq 1539 1 wff ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Colors of variables: wff setvar class
This definition is referenced by:  flval  13523
  Copyright terms: Public domain W3C validator