MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fl Structured version   Visualization version   GIF version

Definition df-fl 13790
Description: Define the floor (greatest integer less than or equal to) function. See flval 13792 for its value, fllelt 13795 for its basic property, and flcl 13793 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 30270).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 13788 . 2 class
2 vx . . 3 setvar 𝑥
3 cr 11138 . . 3 class
4 vy . . . . . . 7 setvar 𝑦
54cv 1533 . . . . . 6 class 𝑦
62cv 1533 . . . . . 6 class 𝑥
7 cle 11280 . . . . . 6 class
85, 6, 7wbr 5148 . . . . 5 wff 𝑦𝑥
9 c1 11140 . . . . . . 7 class 1
10 caddc 11142 . . . . . . 7 class +
115, 9, 10co 7420 . . . . . 6 class (𝑦 + 1)
12 clt 11279 . . . . . 6 class <
136, 11, 12wbr 5148 . . . . 5 wff 𝑥 < (𝑦 + 1)
148, 13wa 395 . . . 4 wff (𝑦𝑥𝑥 < (𝑦 + 1))
15 cz 12589 . . . 4 class
1614, 4, 15crio 7375 . . 3 class (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1)))
172, 3, 16cmpt 5231 . 2 class (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
181, 17wceq 1534 1 wff ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Colors of variables: wff setvar class
This definition is referenced by:  flval  13792
  Copyright terms: Public domain W3C validator