MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fl Structured version   Visualization version   GIF version

Definition df-fl 13843
Description: Define the floor (greatest integer less than or equal to) function. See flval 13845 for its value, fllelt 13848 for its basic property, and flcl 13846 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 30479).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 13841 . 2 class
2 vx . . 3 setvar 𝑥
3 cr 11183 . . 3 class
4 vy . . . . . . 7 setvar 𝑦
54cv 1536 . . . . . 6 class 𝑦
62cv 1536 . . . . . 6 class 𝑥
7 cle 11325 . . . . . 6 class
85, 6, 7wbr 5166 . . . . 5 wff 𝑦𝑥
9 c1 11185 . . . . . . 7 class 1
10 caddc 11187 . . . . . . 7 class +
115, 9, 10co 7448 . . . . . 6 class (𝑦 + 1)
12 clt 11324 . . . . . 6 class <
136, 11, 12wbr 5166 . . . . 5 wff 𝑥 < (𝑦 + 1)
148, 13wa 395 . . . 4 wff (𝑦𝑥𝑥 < (𝑦 + 1))
15 cz 12639 . . . 4 class
1614, 4, 15crio 7403 . . 3 class (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1)))
172, 3, 16cmpt 5249 . 2 class (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
181, 17wceq 1537 1 wff ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Colors of variables: wff setvar class
This definition is referenced by:  flval  13845
  Copyright terms: Public domain W3C validator