MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fl Structured version   Visualization version   GIF version

Definition df-fl 13807
Description: Define the floor (greatest integer less than or equal to) function. See flval 13809 for its value, fllelt 13812 for its basic property, and flcl 13810 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 30374).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 13805 . 2 class
2 vx . . 3 setvar 𝑥
3 cr 11126 . . 3 class
4 vy . . . . . . 7 setvar 𝑦
54cv 1539 . . . . . 6 class 𝑦
62cv 1539 . . . . . 6 class 𝑥
7 cle 11268 . . . . . 6 class
85, 6, 7wbr 5119 . . . . 5 wff 𝑦𝑥
9 c1 11128 . . . . . . 7 class 1
10 caddc 11130 . . . . . . 7 class +
115, 9, 10co 7403 . . . . . 6 class (𝑦 + 1)
12 clt 11267 . . . . . 6 class <
136, 11, 12wbr 5119 . . . . 5 wff 𝑥 < (𝑦 + 1)
148, 13wa 395 . . . 4 wff (𝑦𝑥𝑥 < (𝑦 + 1))
15 cz 12586 . . . 4 class
1614, 4, 15crio 7359 . . 3 class (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1)))
172, 3, 16cmpt 5201 . 2 class (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
181, 17wceq 1540 1 wff ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Colors of variables: wff setvar class
This definition is referenced by:  flval  13809
  Copyright terms: Public domain W3C validator