MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fl Structured version   Visualization version   GIF version

Definition df-fl 13828
Description: Define the floor (greatest integer less than or equal to) function. See flval 13830 for its value, fllelt 13833 for its basic property, and flcl 13831 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 30475).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 13826 . 2 class
2 vx . . 3 setvar 𝑥
3 cr 11151 . . 3 class
4 vy . . . . . . 7 setvar 𝑦
54cv 1535 . . . . . 6 class 𝑦
62cv 1535 . . . . . 6 class 𝑥
7 cle 11293 . . . . . 6 class
85, 6, 7wbr 5147 . . . . 5 wff 𝑦𝑥
9 c1 11153 . . . . . . 7 class 1
10 caddc 11155 . . . . . . 7 class +
115, 9, 10co 7430 . . . . . 6 class (𝑦 + 1)
12 clt 11292 . . . . . 6 class <
136, 11, 12wbr 5147 . . . . 5 wff 𝑥 < (𝑦 + 1)
148, 13wa 395 . . . 4 wff (𝑦𝑥𝑥 < (𝑦 + 1))
15 cz 12610 . . . 4 class
1614, 4, 15crio 7386 . . 3 class (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1)))
172, 3, 16cmpt 5230 . 2 class (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
181, 17wceq 1536 1 wff ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Colors of variables: wff setvar class
This definition is referenced by:  flval  13830
  Copyright terms: Public domain W3C validator