MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fl Structured version   Visualization version   GIF version

Definition df-fl 13613
Description: Define the floor (greatest integer less than or equal to) function. See flval 13615 for its value, fllelt 13618 for its basic property, and flcl 13616 for its closure. For example, (⌊‘(3 / 2)) = 1 while (⌊‘-(3 / 2)) = -2 (ex-fl 29099).

The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.)

Assertion
Ref Expression
df-fl ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-fl
StepHypRef Expression
1 cfl 13611 . 2 class
2 vx . . 3 setvar 𝑥
3 cr 10971 . . 3 class
4 vy . . . . . . 7 setvar 𝑦
54cv 1539 . . . . . 6 class 𝑦
62cv 1539 . . . . . 6 class 𝑥
7 cle 11111 . . . . . 6 class
85, 6, 7wbr 5092 . . . . 5 wff 𝑦𝑥
9 c1 10973 . . . . . . 7 class 1
10 caddc 10975 . . . . . . 7 class +
115, 9, 10co 7337 . . . . . 6 class (𝑦 + 1)
12 clt 11110 . . . . . 6 class <
136, 11, 12wbr 5092 . . . . 5 wff 𝑥 < (𝑦 + 1)
148, 13wa 396 . . . 4 wff (𝑦𝑥𝑥 < (𝑦 + 1))
15 cz 12420 . . . 4 class
1614, 4, 15crio 7292 . . 3 class (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1)))
172, 3, 16cmpt 5175 . 2 class (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
181, 17wceq 1540 1 wff ⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
Colors of variables: wff setvar class
This definition is referenced by:  flval  13615
  Copyright terms: Public domain W3C validator