![]() |
Metamath
Proof Explorer Theorem List (p. 138 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fzolb 13701 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | ||
Theorem | fzolb2 13702 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 < 𝑁)) | ||
Theorem | elfzole1 13703 | A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝐾) | ||
Theorem | elfzolt2 13704 | A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) | ||
Theorem | elfzolt3 13705 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 < 𝑁) | ||
Theorem | elfzolt2b 13706 | A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝐾..^𝑁)) | ||
Theorem | elfzolt3b 13707 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ (𝑀..^𝑁)) | ||
Theorem | elfzop1le2 13708 | A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 + 1) ≤ 𝑁) | ||
Theorem | fzonel 13709 | A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ ¬ 𝐵 ∈ (𝐴..^𝐵) | ||
Theorem | elfzouz2 13710 | The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
Theorem | elfzofz 13711 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...𝑁)) | ||
Theorem | elfzo3 13712 | Express membership in a half-open integer interval in terms of the "less than or equal to" and "less than" predicates on integers, resp. 𝐾 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐾, 𝐾 ∈ (𝐾..^𝑁) ↔ 𝐾 < 𝑁. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁))) | ||
Theorem | fzon0 13713 | A half-open integer interval is nonempty iff it contains its left endpoint. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ ((𝑀..^𝑁) ≠ ∅ ↔ 𝑀 ∈ (𝑀..^𝑁)) | ||
Theorem | fzossfz 13714 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐴..^𝐵) ⊆ (𝐴...𝐵) | ||
Theorem | fzossz 13715 | A half-open integer interval is a set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝑀..^𝑁) ⊆ ℤ | ||
Theorem | fzon 13716 | A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) | ||
Theorem | fzo0n 13717 | A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (0..^(𝑁 − 𝑀)) = ∅)) | ||
Theorem | fzonlt0 13718 | A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 < 𝑁 ↔ (𝑀..^𝑁) = ∅)) | ||
Theorem | fzo0 13719 | Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐴..^𝐴) = ∅ | ||
Theorem | fzonnsub 13720 | If 𝐾 < 𝑁 then 𝑁 − 𝐾 is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝐾) ∈ ℕ) | ||
Theorem | fzonnsub2 13721 | If 𝑀 < 𝑁 then 𝑁 − 𝑀 is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) | ||
Theorem | fzoss1 13722 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) | ||
Theorem | fzoss2 13723 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) | ||
Theorem | fzossrbm1 13724 | Subset of a half-open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | ||
Theorem | fzo0ss1 13725 | Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
⊢ (1..^𝑁) ⊆ (0..^𝑁) | ||
Theorem | fzossnn0 13726 | A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.) |
⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) | ||
Theorem | fzospliti 13727 | One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) | ||
Theorem | fzosplit 13728 | Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) | ||
Theorem | fzodisj 13729 | Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ ((𝐴..^𝐵) ∩ (𝐵..^𝐶)) = ∅ | ||
Theorem | fzouzsplit 13730 | Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | ||
Theorem | fzouzdisj 13731 | A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.) |
⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ | ||
Theorem | fzoun 13732 | A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.) |
⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶)))) | ||
Theorem | fzodisjsn 13733 | A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021.) |
⊢ ((𝐴..^𝐵) ∩ {𝐵}) = ∅ | ||
Theorem | prinfzo0 13734 | The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) | ||
Theorem | lbfzo0 13735 | An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
Theorem | elfzo0 13736 | Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | ||
Theorem | elfzo0z 13737 | Membership in a half-open range of nonnegative integers, generalization of elfzo0 13736 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | ||
Theorem | nn0p1elfzo 13738 | A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁)) | ||
Theorem | elfzo0le 13739 | A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ≤ 𝐵) | ||
Theorem | elfzolem1 13740 | A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) | ||
Theorem | elfzo0subge1 13741 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
⊢ (𝐴 ∈ (0..^𝐵) → 1 ≤ (𝐵 − 𝐴)) | ||
Theorem | elfzo0suble 13742 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
⊢ (𝐴 ∈ (0..^𝐵) → (𝐵 − 𝐴) ≤ 𝐵) | ||
Theorem | elfzonn0 13743 | A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | ||
Theorem | fzonmapblen 13744 | The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) | ||
Theorem | fzofzim 13745 | If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀)) | ||
Theorem | fz1fzo0m1 13746 | Translation of one between closed and open integer ranges. (Contributed by Thierry Arnoux, 28-Jul-2020.) |
⊢ (𝑀 ∈ (1...𝑁) → (𝑀 − 1) ∈ (0..^𝑁)) | ||
Theorem | fzossnn 13747 | Half-open integer ranges starting with 1 are subsets of ℕ. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
⊢ (1..^𝑁) ⊆ ℕ | ||
Theorem | elfzo1 13748 | Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) | ||
Theorem | fzo1lb 13749 | 1 is the left endpoint of a half-open integer range based at 1 iff the right endpoint is an integer greater than 1. (Contributed by AV, 4-Sep-2025.) |
⊢ (1 ∈ (1..^𝑁) ↔ 𝑁 ∈ (ℤ≥‘2)) | ||
Theorem | fzo1fzo0n0 13750 | An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0)) | ||
Theorem | fzo0n0 13751 | A half-open integer range based at 0 is nonempty precisely if the upper bound is a positive integer. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ ((0..^𝐴) ≠ ∅ ↔ 𝐴 ∈ ℕ) | ||
Theorem | fzoaddel 13752 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) | ||
Theorem | fzo0addel 13753 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐶 + 𝐷))) | ||
Theorem | fzo0addelr 13754 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐷 + 𝐶))) | ||
Theorem | fzoaddel2 13755 | Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐴 ∈ (0..^(𝐵 − 𝐶)) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐶) ∈ (𝐶..^𝐵)) | ||
Theorem | elfzoextl 13756 | Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.) |
⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) | ||
Theorem | elfzoext 13757 | Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.) |
⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) | ||
Theorem | elincfzoext 13758 | Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.) |
⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼))) | ||
Theorem | fzosubel 13759 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐷) ∈ ((𝐵 − 𝐷)..^(𝐶 − 𝐷))) | ||
Theorem | fzosubel2 13760 | Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐴 ∈ ((𝐵 + 𝐶)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (𝐶..^𝐷)) | ||
Theorem | fzosubel3 13761 | Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐵) ∈ (0..^𝐷)) | ||
Theorem | eluzgtdifelfzo 13762 | Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ≥‘𝐴) ∧ 𝐵 < 𝐴) → (𝑁 − 𝐴) ∈ (0..^(𝑁 − 𝐵)))) | ||
Theorem | ige2m2fzo 13763 | Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1))) | ||
Theorem | fzocatel 13764 | Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) | ||
Theorem | ubmelfzo 13765 | If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) | ||
Theorem | elfzodifsumelfzo 13766 | If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.) |
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁 − 𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))) | ||
Theorem | elfzom1elp1fzo 13767 | Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) | ||
Theorem | elfzom1elfzo 13768 | Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^𝑁)) | ||
Theorem | fzval3 13769 | Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) | ||
Theorem | fz0add1fz1 13770 | Translate membership in a 0-based half-open integer range into membership in a 1-based finite sequence of integers. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ (0..^𝑁)) → (𝑋 + 1) ∈ (1...𝑁)) | ||
Theorem | fzosn 13771 | Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐴 ∈ ℤ → (𝐴..^(𝐴 + 1)) = {𝐴}) | ||
Theorem | elfzomin 13772 | Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ (𝑍 ∈ ℤ → 𝑍 ∈ (𝑍..^(𝑍 + 1))) | ||
Theorem | zpnn0elfzo 13773 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) | ||
Theorem | zpnn0elfzo1 13774 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1)))) | ||
Theorem | fzosplitsnm1 13775 | Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) | ||
Theorem | elfzonlteqm1 13776 | If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.) |
⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) | ||
Theorem | fzonn0p1 13777 | A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0..^(𝑁 + 1))) | ||
Theorem | fzossfzop1 13778 | A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1))) | ||
Theorem | fzonn0p1p1 13779 | If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
⊢ (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1))) | ||
Theorem | elfzom1p1elfzo 13780 | Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Proof shortened by Thierry Arnoux, 14-Dec-2023.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) | ||
Theorem | fzo0ssnn0 13781 | Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.) (Proof shortened by JJ, 1-Jun-2021.) |
⊢ (0..^𝑁) ⊆ ℕ0 | ||
Theorem | fzo01 13782 | Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ (0..^1) = {0} | ||
Theorem | fzo12sn 13783 | A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.) |
⊢ (1..^2) = {1} | ||
Theorem | fzo13pr 13784 | A 1-based half-open integer interval up to, but not including, 3 is a pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
⊢ (1..^3) = {1, 2} | ||
Theorem | fzo0to2pr 13785 | A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
⊢ (0..^2) = {0, 1} | ||
Theorem | fz01pr 13786 | An integer range between 0 and 1 is a pair. (Contributed by AV, 11-Sep-2025.) |
⊢ (0...1) = {0, 1} | ||
Theorem | fzo0to3tp 13787 | A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
⊢ (0..^3) = {0, 1, 2} | ||
Theorem | fzo0to42pr 13788 | A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
⊢ (0..^4) = ({0, 1} ∪ {2, 3}) | ||
Theorem | fzo1to4tp 13789 | A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021.) |
⊢ (1..^4) = {1, 2, 3} | ||
Theorem | fzo0sn0fzo1 13790 | A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.) |
⊢ (𝑁 ∈ ℕ → (0..^𝑁) = ({0} ∪ (1..^𝑁))) | ||
Theorem | elfzo0l 13791 | A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021.) |
⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 = 0 ∨ 𝐾 ∈ (1..^𝑁))) | ||
Theorem | fzoend 13792 | The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) | ||
Theorem | fzo0end 13793 | The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐵 ∈ ℕ → (𝐵 − 1) ∈ (0..^𝐵)) | ||
Theorem | ssfzo12 13794 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
Theorem | ssfzoulel 13795 | If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵 ≤ 𝐴))) | ||
Theorem | ssfzo12bi 13796 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.) |
⊢ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
Theorem | fzoopth 13797 | A half-open integer range can represent an ordered pair, analogous to fzopth 13597. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
Theorem | ubmelm1fzo 13798 | The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) | ||
Theorem | fzofzp1 13799 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | ||
Theorem | fzofzp1b 13800 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |