Home | Metamath
Proof Explorer Theorem List (p. 138 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | seqfeq3 13701* | Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | ||
Theorem | seqdistr 13702* | The distributive property for series. (Contributed by Mario Carneiro, 28-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦))) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐺‘𝑥) ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝐶𝑇(𝐺‘𝑥))) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | ser0 13703 | The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0) | ||
Theorem | ser0f 13704 | A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0})) = (𝑍 × {0})) | ||
Theorem | serge0 13705* | A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ (seq𝑀( + , 𝐹)‘𝑁)) | ||
Theorem | serle 13706* | Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) | ||
Theorem | ser1const 13707 | Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005.) (Revised by Mario Carneiro, 16-Feb-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( + , (ℕ × {𝐴}))‘𝑁) = (𝑁 · 𝐴)) | ||
Theorem | seqof 13708* | Distribute function operation through a sequence. Note that 𝐺(𝑧) is an implicit function on 𝑧. (Contributed by Mario Carneiro, 3-Mar-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) = (𝑧 ∈ 𝐴 ↦ (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → (seq𝑀( ∘f + , 𝐹)‘𝑁) = (𝑧 ∈ 𝐴 ↦ (seq𝑀( + , 𝐺)‘𝑁))) | ||
Theorem | seqof2 13709* | Distribute function operation through a sequence. Maps-to notation version of seqof 13708. (Contributed by Mario Carneiro, 7-Jul-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → (𝑀...𝑁) ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴)) → 𝑋 ∈ 𝑊) ⇒ ⊢ (𝜑 → (seq𝑀( ∘f + , (𝑥 ∈ 𝐵 ↦ (𝑧 ∈ 𝐴 ↦ 𝑋)))‘𝑁) = (𝑧 ∈ 𝐴 ↦ (seq𝑀( + , (𝑥 ∈ 𝐵 ↦ 𝑋))‘𝑁))) | ||
Syntax | cexp 13710 | Extend class notation to include exponentiation of a complex number to an integer power. |
class ↑ | ||
Definition | df-exp 13711* |
Define exponentiation to nonnegative integer powers. For example,
(5↑2) = 25 (ex-exp 28715). Terminology: In general,
"exponentiation" is the operation of raising a
"base" 𝑥 to the power
of the "exponent" 𝑦, resulting in the "power"
(𝑥↑𝑦), also
called "x to the power of y". In this case, "integer
exponentiation" is
the operation of raising a complex "base" 𝑥 to the
power of an
integer 𝑦, resulting in the "integer
power" (𝑥↑𝑦).
This definition is not meant to be used directly; instead, exp0 13714 and expp1 13717 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts. 10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134 (0exp0e1 13715). 4-Jun-2014: The definition was extended to include negative integer exponents. For example, (-3↑-2) = (1 / 9) (ex-exp 28715). The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems. For a definition of exponentiation including complex exponents see df-cxp 25618 (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz 25727. (Contributed by Raph Levien, 20-May-2004.) (Revised by NM, 15-Oct-2004.) |
⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦))))) | ||
Theorem | expval 13712 | Value of exponentiation to integer powers. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}))‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}))‘-𝑁))))) | ||
Theorem | expnnval 13713 | Value of exponentiation to positive integer powers. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (seq1( · , (ℕ × {𝐴}))‘𝑁)) | ||
Theorem | exp0 13714 | Value of a complex number raised to the 0th power. Note that under our definition, 0↑0 = 1 (0exp0e1 13715) , following the convention used by Gleason. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2004.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | ||
Theorem | 0exp0e1 13715 | The zeroth power of zero equals one. See comment of exp0 13714. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (0↑0) = 1 | ||
Theorem | exp1 13716 | Value of a complex number raised to the first power. (Contributed by NM, 20-Oct-2004.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | ||
Theorem | expp1 13717 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expneg 13718 | Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expneg2 13719 | Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | ||
Theorem | expn1 13720 | A number to the negative one power is the reciprocal. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑-1) = (1 / 𝐴)) | ||
Theorem | expcllem 13721* | Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | expcl2lem 13722* | Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ 𝐹 ⊆ ℂ & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) & ⊢ 1 ∈ 𝐹 & ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐹) ⇒ ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝐴↑𝐵) ∈ 𝐹) | ||
Theorem | nnexpcl 13723 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | ||
Theorem | nn0expcl 13724 | Closure of exponentiation of nonnegative integers. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ0) | ||
Theorem | zexpcl 13725 | Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) | ||
Theorem | qexpcl 13726 | Closure of exponentiation of rationals. (Contributed by NM, 16-Dec-2005.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | reexpcl 13727 | Closure of exponentiation of reals. (Contributed by NM, 14-Dec-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | expcl 13728 | Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | rpexpcl 13729 | Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | ||
Theorem | reexpclz 13730 | Closure of exponentiation of reals. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ) | ||
Theorem | qexpclz 13731 | Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) | ||
Theorem | m1expcl2 13732 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | ||
Theorem | m1expcl 13733 | Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ ℤ) | ||
Theorem | expclzlem 13734 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ (ℂ ∖ {0})) | ||
Theorem | expclz 13735 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | zexpcld 13736 | Closure of exponentiation of integers, deductive form. (Contributed by SN, 15-Sep-2024.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℤ) | ||
Theorem | nn0expcli 13737 | Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝐴↑𝑁) ∈ ℕ0 | ||
Theorem | nn0sqcl 13738 | The square of a nonnegative integer is a nonnegative integer. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → (𝐴↑2) ∈ ℕ0) | ||
Theorem | expm1t 13739 | Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴)) | ||
Theorem | 1exp 13740 | Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) | ||
Theorem | expeq0 13741 | Positive integer exponentiation is 0 iff its base is 0. (Contributed by NM, 23-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) | ||
Theorem | expne0 13742 | Positive integer exponentiation is nonzero iff its base is nonzero. (Contributed by NM, 6-May-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) ≠ 0 ↔ 𝐴 ≠ 0)) | ||
Theorem | expne0i 13743 | Nonnegative integer exponentiation is nonzero if its base is nonzero. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | ||
Theorem | expgt0 13744 | A positive real raised to an integer power is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) | ||
Theorem | expnegz 13745 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | 0exp 13746 | Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004.) |
⊢ (𝑁 ∈ ℕ → (0↑𝑁) = 0) | ||
Theorem | expge0 13747 | A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) | ||
Theorem | expge1 13748 | A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑𝑁)) | ||
Theorem | expgt1 13749 | A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑𝑁)) | ||
Theorem | mulexp 13750 | Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | mulexpz 13751 | Integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) | ||
Theorem | exprec 13752 | Integer exponentiation of a reciprocal. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | expadd 13753 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by NM, 30-Nov-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expaddzlem 13754 | Lemma for expaddz 13755. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expaddz 13755 | Sum of exponents law for integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expmul 13756 | Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | expmulz 13757 | Product of exponents law for integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 7-Jul-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | m1expeven 13758 | Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) | ||
Theorem | expsub 13759 | Exponent subtraction law for integer exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 − 𝑁)) = ((𝐴↑𝑀) / (𝐴↑𝑁))) | ||
Theorem | expp1z 13760 | Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expm1 13761 | Value of a complex number raised to an integer power minus one. (Contributed by NM, 25-Dec-2008.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴↑𝑁) / 𝐴)) | ||
Theorem | expdiv 13762 | Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴↑𝑁) / (𝐵↑𝑁))) | ||
Theorem | sqval 13763 | Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | ||
Theorem | sqneg 13764 | The square of the negative of a number. (Contributed by NM, 15-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | ||
Theorem | sqsubswap 13765 | Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵)↑2) = ((𝐵 − 𝐴)↑2)) | ||
Theorem | sqcl 13766 | Closure of square. (Contributed by NM, 10-Aug-1999.) |
⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | ||
Theorem | sqmul 13767 | Distribution of square over multiplication. (Contributed by NM, 21-Mar-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑2) = ((𝐴↑2) · (𝐵↑2))) | ||
Theorem | sqeq0 13768 | A number is zero iff its square is zero. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = 0 ↔ 𝐴 = 0)) | ||
Theorem | sqdiv 13769 | Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) (Proof shortened by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | sqdivid 13770 | The square of a nonzero number divided by itself yields the number itself. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴↑2) / 𝐴) = 𝐴) | ||
Theorem | sqne0 13771 | A number is nonzero iff its square is nonzero. (Contributed by NM, 11-Mar-2006.) |
⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0)) | ||
Theorem | resqcl 13772 | Closure of the square of a real number. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ) | ||
Theorem | sqgt0 13773 | The square of a nonzero real is positive. (Contributed by NM, 8-Sep-2007.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴↑2)) | ||
Theorem | sqn0rp 13774 | The square of a nonzero real is a positive real. (Contributed by AV, 5-Mar-2023.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴↑2) ∈ ℝ+) | ||
Theorem | nnsqcl 13775 | The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ) | ||
Theorem | zsqcl 13776 | Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | ||
Theorem | qsqcl 13777 | The square of a rational is rational. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | ||
Theorem | sq11 13778 | The square function is one-to-one for nonnegative reals. (Contributed by NM, 8-Apr-2001.) (Proof shortened by Mario Carneiro, 28-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
Theorem | nn0sq11 13779 | The square function is one-to-one for nonnegative integers. (Contributed by AV, 25-Jun-2023.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴↑2) = (𝐵↑2) ↔ 𝐴 = 𝐵)) | ||
Theorem | lt2sq 13780 | The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 24-Feb-2006.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴↑2) < (𝐵↑2))) | ||
Theorem | le2sq 13781 | The square function on nonnegative reals is monotonic. (Contributed by NM, 18-Oct-1999.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (𝐴↑2) ≤ (𝐵↑2))) | ||
Theorem | le2sq2 13782 | The square of a 'less than or equal to' ordering. (Contributed by NM, 21-Mar-2008.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵↑2)) | ||
Theorem | sqge0 13783 | A square of a real is nonnegative. (Contributed by NM, 18-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2)) | ||
Theorem | zsqcl2 13784 | The square of an integer is a nonnegative integer. (Contributed by Mario Carneiro, 18-Apr-2014.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℕ0) | ||
Theorem | 0expd 13785 | Value of zero raised to a positive integer power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (0↑𝑁) = 0) | ||
Theorem | exp0d 13786 | Value of a complex number raised to the 0th power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑0) = 1) | ||
Theorem | exp1d 13787 | Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑1) = 𝐴) | ||
Theorem | expeq0d 13788 | Positive integer exponentiation is 0 iff its base is 0. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (𝐴↑𝑁) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | sqvald 13789 | Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑2) = (𝐴 · 𝐴)) | ||
Theorem | sqcld 13790 | Closure of square. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) | ||
Theorem | sqeq0d 13791 | A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝐴↑2) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | expcld 13792 | Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | expp1d 13793 | Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴↑𝑁) · 𝐴)) | ||
Theorem | expaddd 13794 | Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | ||
Theorem | expmuld 13795 | Product of exponents law for positive integer exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑(𝑀 · 𝑁)) = ((𝐴↑𝑀)↑𝑁)) | ||
Theorem | sqrecd 13796 | Square of reciprocal. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2))) | ||
Theorem | expclzd 13797 | Closure law for integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) | ||
Theorem | expne0d 13798 | Nonnegative integer exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) | ||
Theorem | expnegd 13799 | Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | ||
Theorem | exprecd 13800 | Nonnegative integer exponentiation of a reciprocal. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴↑𝑁))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |