MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flval Structured version   Visualization version   GIF version

Theorem flval 13512
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flval (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5083 . . . 4 (𝑦 = 𝐴 → (𝑥𝑦𝑥𝐴))
2 breq1 5082 . . . 4 (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1)))
31, 2anbi12d 631 . . 3 (𝑦 = 𝐴 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
43riotabidv 7230 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
5 df-fl 13510 . 2 ⌊ = (𝑦 ∈ ℝ ↦ (𝑥 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
6 riotaex 7232 . 2 (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ∈ V
74, 5, 6fvmpt 6872 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  crio 7227  (class class class)co 7271  cr 10871  1c1 10873   + caddc 10875   < clt 11010  cle 11011  cz 12319  cfl 13508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-riota 7228  df-fl 13510
This theorem is referenced by:  flcl  13513  fllelt  13515  flflp1  13525  flbi  13534  dfceil2  13557  ltflcei  35761
  Copyright terms: Public domain W3C validator