![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flval | Structured version Visualization version GIF version |
Description: Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
Ref | Expression |
---|---|
flval | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝐴)) | |
2 | breq1 5151 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 < (𝑥 + 1) ↔ 𝐴 < (𝑥 + 1))) | |
3 | 1, 2 | anbi12d 631 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
4 | 3 | riotabidv 7378 | . 2 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
5 | df-fl 13789 | . 2 ⊢ ⌊ = (𝑦 ∈ ℝ ↦ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) | |
6 | riotaex 7380 | . 2 ⊢ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ∈ V | |
7 | 4, 5, 6 | fvmpt 7005 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 ℩crio 7375 (class class class)co 7420 ℝcr 11137 1c1 11139 + caddc 11141 < clt 11278 ≤ cle 11279 ℤcz 12588 ⌊cfl 13787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-riota 7376 df-fl 13789 |
This theorem is referenced by: flcl 13792 fllelt 13794 flflp1 13804 flbi 13813 dfceil2 13836 ltflcei 37081 |
Copyright terms: Public domain | W3C validator |