MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flcl Structured version   Visualization version   GIF version

Theorem flcl 13817
Description: The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
flcl (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)

Proof of Theorem flcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flval 13816 . 2 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
2 rebtwnz 12968 . . 3 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3 riotacl 7384 . . 3 (∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ∈ ℤ)
42, 3syl 17 . 2 (𝐴 ∈ ℝ → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ∈ ℤ)
51, 4eqeltrd 2835 1 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ∃!wreu 3362   class class class wbr 5124  cfv 6536  crio 7366  (class class class)co 7410  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cz 12593  cfl 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fl 13814
This theorem is referenced by:  reflcl  13818  fllelt  13819  flcld  13820  flflp1  13829  flidm  13831  flidz  13832  flval2  13836  flval3  13837  flge0nn0  13842  flge1nn  13843  flmulnn0  13849  intfrac2  13880  fldiv  13882  fznnfl  13884  uzsup  13885  flpmodeq  13896  rexuzre  15376  limsupgre  15502  rlimclim1  15566  ovoliunlem2  25461  ppisval  27071  ppifl  27127  ppip1le  27128  ppieq0  27143  ppiub  27172  chpeq0  27176  chtub  27180  logfac2  27185  ltflcei  37637  fourierswlem  46226
  Copyright terms: Public domain W3C validator