MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fl Structured version   Visualization version   GIF version

Theorem ex-fl 30422
Description: Example for df-fl 13693. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 11109 . . . 4 1 ∈ ℝ
2 3re 12202 . . . . 5 3 ∈ ℝ
32rehalfcli 12367 . . . 4 (3 / 2) ∈ ℝ
4 2cn 12197 . . . . . . 7 2 ∈ ℂ
54mullidi 11114 . . . . . 6 (1 · 2) = 2
6 2lt3 12289 . . . . . 6 2 < 3
75, 6eqbrtri 5112 . . . . 5 (1 · 2) < 3
8 2pos 12225 . . . . . 6 0 < 2
9 2re 12196 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 12039 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 230 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 11233 . . 3 1 ≤ (3 / 2)
14 3lt4 12291 . . . . . 6 3 < 4
15 2t2e4 12281 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 5118 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 11994 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1463 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 231 . . . 4 (3 / 2) < 2
21 df-2 12185 . . . 4 2 = (1 + 1)
2220, 21breqtri 5116 . . 3 (3 / 2) < (1 + 1)
23 1z 12499 . . . 4 1 ∈ ℤ
24 flbi 13717 . . . 4 (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
253, 23, 24mp2an 692 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
2613, 22, 25mpbir2an 711 . 2 (⌊‘(3 / 2)) = 1
279renegcli 11419 . . . 4 -2 ∈ ℝ
283renegcli 11419 . . . 4 -(3 / 2) ∈ ℝ
293, 9ltnegi 11658 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3020, 29mpbi 230 . . . 4 -2 < -(3 / 2)
3127, 28, 30ltleii 11233 . . 3 -2 ≤ -(3 / 2)
324negcli 11426 . . . . . . 7 -2 ∈ ℂ
33 ax-1cn 11061 . . . . . . 7 1 ∈ ℂ
34 negdi2 11416 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3532, 33, 34mp2an 692 . . . . . 6 -(-2 + 1) = (--2 − 1)
364negnegi 11428 . . . . . . 7 --2 = 2
3736oveq1i 7356 . . . . . 6 (--2 − 1) = (2 − 1)
3835, 37eqtri 2754 . . . . 5 -(-2 + 1) = (2 − 1)
39 2m1e1 12243 . . . . . 6 (2 − 1) = 1
4039, 12eqbrtri 5112 . . . . 5 (2 − 1) < (3 / 2)
4138, 40eqbrtri 5112 . . . 4 -(-2 + 1) < (3 / 2)
4227, 1readdcli 11124 . . . . 5 (-2 + 1) ∈ ℝ
4342, 3ltnegcon1i 11665 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4441, 43mpbi 230 . . 3 -(3 / 2) < (-2 + 1)
45 2z 12501 . . . . 5 2 ∈ ℤ
46 znegcl 12504 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
4745, 46ax-mp 5 . . . 4 -2 ∈ ℤ
48 flbi 13717 . . . 4 ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
4928, 47, 48mp2an 692 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5031, 44, 49mpbir2an 711 . 2 (⌊‘-(3 / 2)) = -2
5126, 50pm3.2i 470 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341  -cneg 11342   / cdiv 11771  2c2 12177  3c3 12178  4c4 12179  cz 12465  cfl 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-n0 12379  df-z 12466  df-uz 12730  df-fl 13693
This theorem is referenced by:  ex-ceil  30423
  Copyright terms: Public domain W3C validator