![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-fl | Structured version Visualization version GIF version |
Description: Example for df-fl 13753. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-fl | ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11210 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 3re 12288 | . . . . 5 ⊢ 3 ∈ ℝ | |
3 | 2 | rehalfcli 12457 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
4 | 2cn 12283 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 4 | mullidi 11215 | . . . . . 6 ⊢ (1 · 2) = 2 |
6 | 2lt3 12380 | . . . . . 6 ⊢ 2 < 3 | |
7 | 5, 6 | eqbrtri 5168 | . . . . 5 ⊢ (1 · 2) < 3 |
8 | 2pos 12311 | . . . . . 6 ⊢ 0 < 2 | |
9 | 2re 12282 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
10 | 1, 2, 9 | ltmuldivi 12130 | . . . . . 6 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
12 | 7, 11 | mpbi 229 | . . . 4 ⊢ 1 < (3 / 2) |
13 | 1, 3, 12 | ltleii 11333 | . . 3 ⊢ 1 ≤ (3 / 2) |
14 | 3lt4 12382 | . . . . . 6 ⊢ 3 < 4 | |
15 | 2t2e4 12372 | . . . . . 6 ⊢ (2 · 2) = 4 | |
16 | 14, 15 | breqtrri 5174 | . . . . 5 ⊢ 3 < (2 · 2) |
17 | 9, 8 | pm3.2i 471 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
18 | ltdivmul 12085 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
19 | 2, 9, 17, 18 | mp3an 1461 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
20 | 16, 19 | mpbir 230 | . . . 4 ⊢ (3 / 2) < 2 |
21 | df-2 12271 | . . . 4 ⊢ 2 = (1 + 1) | |
22 | 20, 21 | breqtri 5172 | . . 3 ⊢ (3 / 2) < (1 + 1) |
23 | 1z 12588 | . . . 4 ⊢ 1 ∈ ℤ | |
24 | flbi 13777 | . . . 4 ⊢ (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))) | |
25 | 3, 23, 24 | mp2an 690 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))) |
26 | 13, 22, 25 | mpbir2an 709 | . 2 ⊢ (⌊‘(3 / 2)) = 1 |
27 | 9 | renegcli 11517 | . . . 4 ⊢ -2 ∈ ℝ |
28 | 3 | renegcli 11517 | . . . 4 ⊢ -(3 / 2) ∈ ℝ |
29 | 3, 9 | ltnegi 11754 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ -2 < -(3 / 2)) |
30 | 20, 29 | mpbi 229 | . . . 4 ⊢ -2 < -(3 / 2) |
31 | 27, 28, 30 | ltleii 11333 | . . 3 ⊢ -2 ≤ -(3 / 2) |
32 | 4 | negcli 11524 | . . . . . . 7 ⊢ -2 ∈ ℂ |
33 | ax-1cn 11164 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
34 | negdi2 11514 | . . . . . . 7 ⊢ ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1)) | |
35 | 32, 33, 34 | mp2an 690 | . . . . . 6 ⊢ -(-2 + 1) = (--2 − 1) |
36 | 4 | negnegi 11526 | . . . . . . 7 ⊢ --2 = 2 |
37 | 36 | oveq1i 7415 | . . . . . 6 ⊢ (--2 − 1) = (2 − 1) |
38 | 35, 37 | eqtri 2760 | . . . . 5 ⊢ -(-2 + 1) = (2 − 1) |
39 | 2m1e1 12334 | . . . . . 6 ⊢ (2 − 1) = 1 | |
40 | 39, 12 | eqbrtri 5168 | . . . . 5 ⊢ (2 − 1) < (3 / 2) |
41 | 38, 40 | eqbrtri 5168 | . . . 4 ⊢ -(-2 + 1) < (3 / 2) |
42 | 27, 1 | readdcli 11225 | . . . . 5 ⊢ (-2 + 1) ∈ ℝ |
43 | 42, 3 | ltnegcon1i 11761 | . . . 4 ⊢ (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1)) |
44 | 41, 43 | mpbi 229 | . . 3 ⊢ -(3 / 2) < (-2 + 1) |
45 | 2z 12590 | . . . . 5 ⊢ 2 ∈ ℤ | |
46 | znegcl 12593 | . . . . 5 ⊢ (2 ∈ ℤ → -2 ∈ ℤ) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ -2 ∈ ℤ |
48 | flbi 13777 | . . . 4 ⊢ ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))) | |
49 | 28, 47, 48 | mp2an 690 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))) |
50 | 31, 44, 49 | mpbir2an 709 | . 2 ⊢ (⌊‘-(3 / 2)) = -2 |
51 | 26, 50 | pm3.2i 471 | 1 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 · cmul 11111 < clt 11244 ≤ cle 11245 − cmin 11440 -cneg 11441 / cdiv 11867 2c2 12263 3c3 12264 4c4 12265 ℤcz 12554 ⌊cfl 13751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-fl 13753 |
This theorem is referenced by: ex-ceil 29690 |
Copyright terms: Public domain | W3C validator |