MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fl Structured version   Visualization version   GIF version

Theorem ex-fl 30476
Description: Example for df-fl 13829. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 11259 . . . 4 1 ∈ ℝ
2 3re 12344 . . . . 5 3 ∈ ℝ
32rehalfcli 12513 . . . 4 (3 / 2) ∈ ℝ
4 2cn 12339 . . . . . . 7 2 ∈ ℂ
54mullidi 11264 . . . . . 6 (1 · 2) = 2
6 2lt3 12436 . . . . . 6 2 < 3
75, 6eqbrtri 5169 . . . . 5 (1 · 2) < 3
8 2pos 12367 . . . . . 6 0 < 2
9 2re 12338 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 12186 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 230 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 11382 . . 3 1 ≤ (3 / 2)
14 3lt4 12438 . . . . . 6 3 < 4
15 2t2e4 12428 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 5175 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 12141 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1460 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 231 . . . 4 (3 / 2) < 2
21 df-2 12327 . . . 4 2 = (1 + 1)
2220, 21breqtri 5173 . . 3 (3 / 2) < (1 + 1)
23 1z 12645 . . . 4 1 ∈ ℤ
24 flbi 13853 . . . 4 (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
253, 23, 24mp2an 692 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
2613, 22, 25mpbir2an 711 . 2 (⌊‘(3 / 2)) = 1
279renegcli 11568 . . . 4 -2 ∈ ℝ
283renegcli 11568 . . . 4 -(3 / 2) ∈ ℝ
293, 9ltnegi 11805 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3020, 29mpbi 230 . . . 4 -2 < -(3 / 2)
3127, 28, 30ltleii 11382 . . 3 -2 ≤ -(3 / 2)
324negcli 11575 . . . . . . 7 -2 ∈ ℂ
33 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
34 negdi2 11565 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3532, 33, 34mp2an 692 . . . . . 6 -(-2 + 1) = (--2 − 1)
364negnegi 11577 . . . . . . 7 --2 = 2
3736oveq1i 7441 . . . . . 6 (--2 − 1) = (2 − 1)
3835, 37eqtri 2763 . . . . 5 -(-2 + 1) = (2 − 1)
39 2m1e1 12390 . . . . . 6 (2 − 1) = 1
4039, 12eqbrtri 5169 . . . . 5 (2 − 1) < (3 / 2)
4138, 40eqbrtri 5169 . . . 4 -(-2 + 1) < (3 / 2)
4227, 1readdcli 11274 . . . . 5 (-2 + 1) ∈ ℝ
4342, 3ltnegcon1i 11812 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4441, 43mpbi 230 . . 3 -(3 / 2) < (-2 + 1)
45 2z 12647 . . . . 5 2 ∈ ℤ
46 znegcl 12650 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
4745, 46ax-mp 5 . . . 4 -2 ∈ ℤ
48 flbi 13853 . . . 4 ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
4928, 47, 48mp2an 692 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5031, 44, 49mpbir2an 711 . 2 (⌊‘-(3 / 2)) = -2
5126, 50pm3.2i 470 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  3c3 12320  4c4 12321  cz 12611  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-fl 13829
This theorem is referenced by:  ex-ceil  30477
  Copyright terms: Public domain W3C validator