Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-fl | Structured version Visualization version GIF version |
Description: Example for df-fl 13440. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-fl | ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10906 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 3re 11983 | . . . . 5 ⊢ 3 ∈ ℝ | |
3 | 2 | rehalfcli 12152 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
4 | 2cn 11978 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 4 | mulid2i 10911 | . . . . . 6 ⊢ (1 · 2) = 2 |
6 | 2lt3 12075 | . . . . . 6 ⊢ 2 < 3 | |
7 | 5, 6 | eqbrtri 5091 | . . . . 5 ⊢ (1 · 2) < 3 |
8 | 2pos 12006 | . . . . . 6 ⊢ 0 < 2 | |
9 | 2re 11977 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
10 | 1, 2, 9 | ltmuldivi 11825 | . . . . . 6 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
12 | 7, 11 | mpbi 229 | . . . 4 ⊢ 1 < (3 / 2) |
13 | 1, 3, 12 | ltleii 11028 | . . 3 ⊢ 1 ≤ (3 / 2) |
14 | 3lt4 12077 | . . . . . 6 ⊢ 3 < 4 | |
15 | 2t2e4 12067 | . . . . . 6 ⊢ (2 · 2) = 4 | |
16 | 14, 15 | breqtrri 5097 | . . . . 5 ⊢ 3 < (2 · 2) |
17 | 9, 8 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
18 | ltdivmul 11780 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
19 | 2, 9, 17, 18 | mp3an 1459 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
20 | 16, 19 | mpbir 230 | . . . 4 ⊢ (3 / 2) < 2 |
21 | df-2 11966 | . . . 4 ⊢ 2 = (1 + 1) | |
22 | 20, 21 | breqtri 5095 | . . 3 ⊢ (3 / 2) < (1 + 1) |
23 | 1z 12280 | . . . 4 ⊢ 1 ∈ ℤ | |
24 | flbi 13464 | . . . 4 ⊢ (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))) | |
25 | 3, 23, 24 | mp2an 688 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))) |
26 | 13, 22, 25 | mpbir2an 707 | . 2 ⊢ (⌊‘(3 / 2)) = 1 |
27 | 9 | renegcli 11212 | . . . 4 ⊢ -2 ∈ ℝ |
28 | 3 | renegcli 11212 | . . . 4 ⊢ -(3 / 2) ∈ ℝ |
29 | 3, 9 | ltnegi 11449 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ -2 < -(3 / 2)) |
30 | 20, 29 | mpbi 229 | . . . 4 ⊢ -2 < -(3 / 2) |
31 | 27, 28, 30 | ltleii 11028 | . . 3 ⊢ -2 ≤ -(3 / 2) |
32 | 4 | negcli 11219 | . . . . . . 7 ⊢ -2 ∈ ℂ |
33 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
34 | negdi2 11209 | . . . . . . 7 ⊢ ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1)) | |
35 | 32, 33, 34 | mp2an 688 | . . . . . 6 ⊢ -(-2 + 1) = (--2 − 1) |
36 | 4 | negnegi 11221 | . . . . . . 7 ⊢ --2 = 2 |
37 | 36 | oveq1i 7265 | . . . . . 6 ⊢ (--2 − 1) = (2 − 1) |
38 | 35, 37 | eqtri 2766 | . . . . 5 ⊢ -(-2 + 1) = (2 − 1) |
39 | 2m1e1 12029 | . . . . . 6 ⊢ (2 − 1) = 1 | |
40 | 39, 12 | eqbrtri 5091 | . . . . 5 ⊢ (2 − 1) < (3 / 2) |
41 | 38, 40 | eqbrtri 5091 | . . . 4 ⊢ -(-2 + 1) < (3 / 2) |
42 | 27, 1 | readdcli 10921 | . . . . 5 ⊢ (-2 + 1) ∈ ℝ |
43 | 42, 3 | ltnegcon1i 11456 | . . . 4 ⊢ (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1)) |
44 | 41, 43 | mpbi 229 | . . 3 ⊢ -(3 / 2) < (-2 + 1) |
45 | 2z 12282 | . . . . 5 ⊢ 2 ∈ ℤ | |
46 | znegcl 12285 | . . . . 5 ⊢ (2 ∈ ℤ → -2 ∈ ℤ) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ -2 ∈ ℤ |
48 | flbi 13464 | . . . 4 ⊢ ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))) | |
49 | 28, 47, 48 | mp2an 688 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))) |
50 | 31, 44, 49 | mpbir2an 707 | . 2 ⊢ (⌊‘-(3 / 2)) = -2 |
51 | 26, 50 | pm3.2i 470 | 1 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 3c3 11959 4c4 11960 ℤcz 12249 ⌊cfl 13438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-fl 13440 |
This theorem is referenced by: ex-ceil 28713 |
Copyright terms: Public domain | W3C validator |