MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fl Structured version   Visualization version   GIF version

Theorem ex-fl 30383
Description: Example for df-fl 13761. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 11181 . . . 4 1 ∈ ℝ
2 3re 12273 . . . . 5 3 ∈ ℝ
32rehalfcli 12438 . . . 4 (3 / 2) ∈ ℝ
4 2cn 12268 . . . . . . 7 2 ∈ ℂ
54mullidi 11186 . . . . . 6 (1 · 2) = 2
6 2lt3 12360 . . . . . 6 2 < 3
75, 6eqbrtri 5131 . . . . 5 (1 · 2) < 3
8 2pos 12296 . . . . . 6 0 < 2
9 2re 12267 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 12110 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 230 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 11304 . . 3 1 ≤ (3 / 2)
14 3lt4 12362 . . . . . 6 3 < 4
15 2t2e4 12352 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 5137 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 12065 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1463 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 231 . . . 4 (3 / 2) < 2
21 df-2 12256 . . . 4 2 = (1 + 1)
2220, 21breqtri 5135 . . 3 (3 / 2) < (1 + 1)
23 1z 12570 . . . 4 1 ∈ ℤ
24 flbi 13785 . . . 4 (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
253, 23, 24mp2an 692 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
2613, 22, 25mpbir2an 711 . 2 (⌊‘(3 / 2)) = 1
279renegcli 11490 . . . 4 -2 ∈ ℝ
283renegcli 11490 . . . 4 -(3 / 2) ∈ ℝ
293, 9ltnegi 11729 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3020, 29mpbi 230 . . . 4 -2 < -(3 / 2)
3127, 28, 30ltleii 11304 . . 3 -2 ≤ -(3 / 2)
324negcli 11497 . . . . . . 7 -2 ∈ ℂ
33 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
34 negdi2 11487 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3532, 33, 34mp2an 692 . . . . . 6 -(-2 + 1) = (--2 − 1)
364negnegi 11499 . . . . . . 7 --2 = 2
3736oveq1i 7400 . . . . . 6 (--2 − 1) = (2 − 1)
3835, 37eqtri 2753 . . . . 5 -(-2 + 1) = (2 − 1)
39 2m1e1 12314 . . . . . 6 (2 − 1) = 1
4039, 12eqbrtri 5131 . . . . 5 (2 − 1) < (3 / 2)
4138, 40eqbrtri 5131 . . . 4 -(-2 + 1) < (3 / 2)
4227, 1readdcli 11196 . . . . 5 (-2 + 1) ∈ ℝ
4342, 3ltnegcon1i 11736 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4441, 43mpbi 230 . . 3 -(3 / 2) < (-2 + 1)
45 2z 12572 . . . . 5 2 ∈ ℤ
46 znegcl 12575 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
4745, 46ax-mp 5 . . . 4 -2 ∈ ℤ
48 flbi 13785 . . . 4 ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
4928, 47, 48mp2an 692 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5031, 44, 49mpbir2an 711 . 2 (⌊‘-(3 / 2)) = -2
5126, 50pm3.2i 470 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  3c3 12249  4c4 12250  cz 12536  cfl 13759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-fl 13761
This theorem is referenced by:  ex-ceil  30384
  Copyright terms: Public domain W3C validator