![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-fl | Structured version Visualization version GIF version |
Description: Example for df-fl 13758. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-fl | ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11213 | . . . 4 ⊢ 1 ∈ ℝ | |
2 | 3re 12291 | . . . . 5 ⊢ 3 ∈ ℝ | |
3 | 2 | rehalfcli 12460 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
4 | 2cn 12286 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
5 | 4 | mullidi 11218 | . . . . . 6 ⊢ (1 · 2) = 2 |
6 | 2lt3 12383 | . . . . . 6 ⊢ 2 < 3 | |
7 | 5, 6 | eqbrtri 5160 | . . . . 5 ⊢ (1 · 2) < 3 |
8 | 2pos 12314 | . . . . . 6 ⊢ 0 < 2 | |
9 | 2re 12285 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
10 | 1, 2, 9 | ltmuldivi 12133 | . . . . . 6 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
12 | 7, 11 | mpbi 229 | . . . 4 ⊢ 1 < (3 / 2) |
13 | 1, 3, 12 | ltleii 11336 | . . 3 ⊢ 1 ≤ (3 / 2) |
14 | 3lt4 12385 | . . . . . 6 ⊢ 3 < 4 | |
15 | 2t2e4 12375 | . . . . . 6 ⊢ (2 · 2) = 4 | |
16 | 14, 15 | breqtrri 5166 | . . . . 5 ⊢ 3 < (2 · 2) |
17 | 9, 8 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
18 | ltdivmul 12088 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
19 | 2, 9, 17, 18 | mp3an 1457 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
20 | 16, 19 | mpbir 230 | . . . 4 ⊢ (3 / 2) < 2 |
21 | df-2 12274 | . . . 4 ⊢ 2 = (1 + 1) | |
22 | 20, 21 | breqtri 5164 | . . 3 ⊢ (3 / 2) < (1 + 1) |
23 | 1z 12591 | . . . 4 ⊢ 1 ∈ ℤ | |
24 | flbi 13782 | . . . 4 ⊢ (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))) | |
25 | 3, 23, 24 | mp2an 689 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))) |
26 | 13, 22, 25 | mpbir2an 708 | . 2 ⊢ (⌊‘(3 / 2)) = 1 |
27 | 9 | renegcli 11520 | . . . 4 ⊢ -2 ∈ ℝ |
28 | 3 | renegcli 11520 | . . . 4 ⊢ -(3 / 2) ∈ ℝ |
29 | 3, 9 | ltnegi 11757 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ -2 < -(3 / 2)) |
30 | 20, 29 | mpbi 229 | . . . 4 ⊢ -2 < -(3 / 2) |
31 | 27, 28, 30 | ltleii 11336 | . . 3 ⊢ -2 ≤ -(3 / 2) |
32 | 4 | negcli 11527 | . . . . . . 7 ⊢ -2 ∈ ℂ |
33 | ax-1cn 11165 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
34 | negdi2 11517 | . . . . . . 7 ⊢ ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1)) | |
35 | 32, 33, 34 | mp2an 689 | . . . . . 6 ⊢ -(-2 + 1) = (--2 − 1) |
36 | 4 | negnegi 11529 | . . . . . . 7 ⊢ --2 = 2 |
37 | 36 | oveq1i 7412 | . . . . . 6 ⊢ (--2 − 1) = (2 − 1) |
38 | 35, 37 | eqtri 2752 | . . . . 5 ⊢ -(-2 + 1) = (2 − 1) |
39 | 2m1e1 12337 | . . . . . 6 ⊢ (2 − 1) = 1 | |
40 | 39, 12 | eqbrtri 5160 | . . . . 5 ⊢ (2 − 1) < (3 / 2) |
41 | 38, 40 | eqbrtri 5160 | . . . 4 ⊢ -(-2 + 1) < (3 / 2) |
42 | 27, 1 | readdcli 11228 | . . . . 5 ⊢ (-2 + 1) ∈ ℝ |
43 | 42, 3 | ltnegcon1i 11764 | . . . 4 ⊢ (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1)) |
44 | 41, 43 | mpbi 229 | . . 3 ⊢ -(3 / 2) < (-2 + 1) |
45 | 2z 12593 | . . . . 5 ⊢ 2 ∈ ℤ | |
46 | znegcl 12596 | . . . . 5 ⊢ (2 ∈ ℤ → -2 ∈ ℤ) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ -2 ∈ ℤ |
48 | flbi 13782 | . . . 4 ⊢ ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))) | |
49 | 28, 47, 48 | mp2an 689 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))) |
50 | 31, 44, 49 | mpbir2an 708 | . 2 ⊢ (⌊‘-(3 / 2)) = -2 |
51 | 26, 50 | pm3.2i 470 | 1 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 ℂcc 11105 ℝcr 11106 0cc0 11107 1c1 11108 + caddc 11110 · cmul 11112 < clt 11247 ≤ cle 11248 − cmin 11443 -cneg 11444 / cdiv 11870 2c2 12266 3c3 12267 4c4 12268 ℤcz 12557 ⌊cfl 13756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-fl 13758 |
This theorem is referenced by: ex-ceil 30196 |
Copyright terms: Public domain | W3C validator |