MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fl Structured version   Visualization version   GIF version

Theorem ex-fl 30433
Description: Example for df-fl 13814. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 11240 . . . 4 1 ∈ ℝ
2 3re 12325 . . . . 5 3 ∈ ℝ
32rehalfcli 12495 . . . 4 (3 / 2) ∈ ℝ
4 2cn 12320 . . . . . . 7 2 ∈ ℂ
54mullidi 11245 . . . . . 6 (1 · 2) = 2
6 2lt3 12417 . . . . . 6 2 < 3
75, 6eqbrtri 5145 . . . . 5 (1 · 2) < 3
8 2pos 12348 . . . . . 6 0 < 2
9 2re 12319 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 12167 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 230 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 11363 . . 3 1 ≤ (3 / 2)
14 3lt4 12419 . . . . . 6 3 < 4
15 2t2e4 12409 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 5151 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 12122 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1463 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 231 . . . 4 (3 / 2) < 2
21 df-2 12308 . . . 4 2 = (1 + 1)
2220, 21breqtri 5149 . . 3 (3 / 2) < (1 + 1)
23 1z 12627 . . . 4 1 ∈ ℤ
24 flbi 13838 . . . 4 (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
253, 23, 24mp2an 692 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
2613, 22, 25mpbir2an 711 . 2 (⌊‘(3 / 2)) = 1
279renegcli 11549 . . . 4 -2 ∈ ℝ
283renegcli 11549 . . . 4 -(3 / 2) ∈ ℝ
293, 9ltnegi 11786 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3020, 29mpbi 230 . . . 4 -2 < -(3 / 2)
3127, 28, 30ltleii 11363 . . 3 -2 ≤ -(3 / 2)
324negcli 11556 . . . . . . 7 -2 ∈ ℂ
33 ax-1cn 11192 . . . . . . 7 1 ∈ ℂ
34 negdi2 11546 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3532, 33, 34mp2an 692 . . . . . 6 -(-2 + 1) = (--2 − 1)
364negnegi 11558 . . . . . . 7 --2 = 2
3736oveq1i 7420 . . . . . 6 (--2 − 1) = (2 − 1)
3835, 37eqtri 2759 . . . . 5 -(-2 + 1) = (2 − 1)
39 2m1e1 12371 . . . . . 6 (2 − 1) = 1
4039, 12eqbrtri 5145 . . . . 5 (2 − 1) < (3 / 2)
4138, 40eqbrtri 5145 . . . 4 -(-2 + 1) < (3 / 2)
4227, 1readdcli 11255 . . . . 5 (-2 + 1) ∈ ℝ
4342, 3ltnegcon1i 11793 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4441, 43mpbi 230 . . 3 -(3 / 2) < (-2 + 1)
45 2z 12629 . . . . 5 2 ∈ ℤ
46 znegcl 12632 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
4745, 46ax-mp 5 . . . 4 -2 ∈ ℤ
48 flbi 13838 . . . 4 ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
4928, 47, 48mp2an 692 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5031, 44, 49mpbir2an 711 . 2 (⌊‘-(3 / 2)) = -2
5126, 50pm3.2i 470 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  3c3 12301  4c4 12302  cz 12593  cfl 13812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-fl 13814
This theorem is referenced by:  ex-ceil  30434
  Copyright terms: Public domain W3C validator