MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fl Structured version   Visualization version   GIF version

Theorem ex-fl 28712
Description: Example for df-fl 13440. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 10906 . . . 4 1 ∈ ℝ
2 3re 11983 . . . . 5 3 ∈ ℝ
32rehalfcli 12152 . . . 4 (3 / 2) ∈ ℝ
4 2cn 11978 . . . . . . 7 2 ∈ ℂ
54mulid2i 10911 . . . . . 6 (1 · 2) = 2
6 2lt3 12075 . . . . . 6 2 < 3
75, 6eqbrtri 5091 . . . . 5 (1 · 2) < 3
8 2pos 12006 . . . . . 6 0 < 2
9 2re 11977 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 11825 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 229 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 11028 . . 3 1 ≤ (3 / 2)
14 3lt4 12077 . . . . . 6 3 < 4
15 2t2e4 12067 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 5097 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 11780 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1459 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 230 . . . 4 (3 / 2) < 2
21 df-2 11966 . . . 4 2 = (1 + 1)
2220, 21breqtri 5095 . . 3 (3 / 2) < (1 + 1)
23 1z 12280 . . . 4 1 ∈ ℤ
24 flbi 13464 . . . 4 (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
253, 23, 24mp2an 688 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
2613, 22, 25mpbir2an 707 . 2 (⌊‘(3 / 2)) = 1
279renegcli 11212 . . . 4 -2 ∈ ℝ
283renegcli 11212 . . . 4 -(3 / 2) ∈ ℝ
293, 9ltnegi 11449 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3020, 29mpbi 229 . . . 4 -2 < -(3 / 2)
3127, 28, 30ltleii 11028 . . 3 -2 ≤ -(3 / 2)
324negcli 11219 . . . . . . 7 -2 ∈ ℂ
33 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
34 negdi2 11209 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3532, 33, 34mp2an 688 . . . . . 6 -(-2 + 1) = (--2 − 1)
364negnegi 11221 . . . . . . 7 --2 = 2
3736oveq1i 7265 . . . . . 6 (--2 − 1) = (2 − 1)
3835, 37eqtri 2766 . . . . 5 -(-2 + 1) = (2 − 1)
39 2m1e1 12029 . . . . . 6 (2 − 1) = 1
4039, 12eqbrtri 5091 . . . . 5 (2 − 1) < (3 / 2)
4138, 40eqbrtri 5091 . . . 4 -(-2 + 1) < (3 / 2)
4227, 1readdcli 10921 . . . . 5 (-2 + 1) ∈ ℝ
4342, 3ltnegcon1i 11456 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4441, 43mpbi 229 . . 3 -(3 / 2) < (-2 + 1)
45 2z 12282 . . . . 5 2 ∈ ℤ
46 znegcl 12285 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
4745, 46ax-mp 5 . . . 4 -2 ∈ ℤ
48 flbi 13464 . . . 4 ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
4928, 47, 48mp2an 688 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5031, 44, 49mpbir2an 707 . 2 (⌊‘-(3 / 2)) = -2
5126, 50pm3.2i 470 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  3c3 11959  4c4 11960  cz 12249  cfl 13438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-fl 13440
This theorem is referenced by:  ex-ceil  28713
  Copyright terms: Public domain W3C validator