| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-fl | Structured version Visualization version GIF version | ||
| Description: Example for df-fl 13814. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-fl | ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11240 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | 3re 12325 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 3 | 2 | rehalfcli 12495 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 4 | 2cn 12320 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 5 | 4 | mullidi 11245 | . . . . . 6 ⊢ (1 · 2) = 2 |
| 6 | 2lt3 12417 | . . . . . 6 ⊢ 2 < 3 | |
| 7 | 5, 6 | eqbrtri 5145 | . . . . 5 ⊢ (1 · 2) < 3 |
| 8 | 2pos 12348 | . . . . . 6 ⊢ 0 < 2 | |
| 9 | 2re 12319 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 10 | 1, 2, 9 | ltmuldivi 12167 | . . . . . 6 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
| 11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 12 | 7, 11 | mpbi 230 | . . . 4 ⊢ 1 < (3 / 2) |
| 13 | 1, 3, 12 | ltleii 11363 | . . 3 ⊢ 1 ≤ (3 / 2) |
| 14 | 3lt4 12419 | . . . . . 6 ⊢ 3 < 4 | |
| 15 | 2t2e4 12409 | . . . . . 6 ⊢ (2 · 2) = 4 | |
| 16 | 14, 15 | breqtrri 5151 | . . . . 5 ⊢ 3 < (2 · 2) |
| 17 | 9, 8 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 18 | ltdivmul 12122 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
| 19 | 2, 9, 17, 18 | mp3an 1463 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
| 20 | 16, 19 | mpbir 231 | . . . 4 ⊢ (3 / 2) < 2 |
| 21 | df-2 12308 | . . . 4 ⊢ 2 = (1 + 1) | |
| 22 | 20, 21 | breqtri 5149 | . . 3 ⊢ (3 / 2) < (1 + 1) |
| 23 | 1z 12627 | . . . 4 ⊢ 1 ∈ ℤ | |
| 24 | flbi 13838 | . . . 4 ⊢ (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))) | |
| 25 | 3, 23, 24 | mp2an 692 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))) |
| 26 | 13, 22, 25 | mpbir2an 711 | . 2 ⊢ (⌊‘(3 / 2)) = 1 |
| 27 | 9 | renegcli 11549 | . . . 4 ⊢ -2 ∈ ℝ |
| 28 | 3 | renegcli 11549 | . . . 4 ⊢ -(3 / 2) ∈ ℝ |
| 29 | 3, 9 | ltnegi 11786 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ -2 < -(3 / 2)) |
| 30 | 20, 29 | mpbi 230 | . . . 4 ⊢ -2 < -(3 / 2) |
| 31 | 27, 28, 30 | ltleii 11363 | . . 3 ⊢ -2 ≤ -(3 / 2) |
| 32 | 4 | negcli 11556 | . . . . . . 7 ⊢ -2 ∈ ℂ |
| 33 | ax-1cn 11192 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 34 | negdi2 11546 | . . . . . . 7 ⊢ ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1)) | |
| 35 | 32, 33, 34 | mp2an 692 | . . . . . 6 ⊢ -(-2 + 1) = (--2 − 1) |
| 36 | 4 | negnegi 11558 | . . . . . . 7 ⊢ --2 = 2 |
| 37 | 36 | oveq1i 7420 | . . . . . 6 ⊢ (--2 − 1) = (2 − 1) |
| 38 | 35, 37 | eqtri 2759 | . . . . 5 ⊢ -(-2 + 1) = (2 − 1) |
| 39 | 2m1e1 12371 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 40 | 39, 12 | eqbrtri 5145 | . . . . 5 ⊢ (2 − 1) < (3 / 2) |
| 41 | 38, 40 | eqbrtri 5145 | . . . 4 ⊢ -(-2 + 1) < (3 / 2) |
| 42 | 27, 1 | readdcli 11255 | . . . . 5 ⊢ (-2 + 1) ∈ ℝ |
| 43 | 42, 3 | ltnegcon1i 11793 | . . . 4 ⊢ (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1)) |
| 44 | 41, 43 | mpbi 230 | . . 3 ⊢ -(3 / 2) < (-2 + 1) |
| 45 | 2z 12629 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 46 | znegcl 12632 | . . . . 5 ⊢ (2 ∈ ℤ → -2 ∈ ℤ) | |
| 47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ -2 ∈ ℤ |
| 48 | flbi 13838 | . . . 4 ⊢ ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))) | |
| 49 | 28, 47, 48 | mp2an 692 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))) |
| 50 | 31, 44, 49 | mpbir2an 711 | . 2 ⊢ (⌊‘-(3 / 2)) = -2 |
| 51 | 26, 50 | pm3.2i 470 | 1 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 < clt 11274 ≤ cle 11275 − cmin 11471 -cneg 11472 / cdiv 11899 2c2 12300 3c3 12301 4c4 12302 ℤcz 12593 ⌊cfl 13812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-fl 13814 |
| This theorem is referenced by: ex-ceil 30434 |
| Copyright terms: Public domain | W3C validator |