| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-fl | Structured version Visualization version GIF version | ||
| Description: Example for df-fl 13761. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| ex-fl | ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 2 | 3re 12273 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 3 | 2 | rehalfcli 12438 | . . . 4 ⊢ (3 / 2) ∈ ℝ |
| 4 | 2cn 12268 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 5 | 4 | mullidi 11186 | . . . . . 6 ⊢ (1 · 2) = 2 |
| 6 | 2lt3 12360 | . . . . . 6 ⊢ 2 < 3 | |
| 7 | 5, 6 | eqbrtri 5131 | . . . . 5 ⊢ (1 · 2) < 3 |
| 8 | 2pos 12296 | . . . . . 6 ⊢ 0 < 2 | |
| 9 | 2re 12267 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 10 | 1, 2, 9 | ltmuldivi 12110 | . . . . . 6 ⊢ (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2))) |
| 11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ ((1 · 2) < 3 ↔ 1 < (3 / 2)) |
| 12 | 7, 11 | mpbi 230 | . . . 4 ⊢ 1 < (3 / 2) |
| 13 | 1, 3, 12 | ltleii 11304 | . . 3 ⊢ 1 ≤ (3 / 2) |
| 14 | 3lt4 12362 | . . . . . 6 ⊢ 3 < 4 | |
| 15 | 2t2e4 12352 | . . . . . 6 ⊢ (2 · 2) = 4 | |
| 16 | 14, 15 | breqtrri 5137 | . . . . 5 ⊢ 3 < (2 · 2) |
| 17 | 9, 8 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 18 | ltdivmul 12065 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2))) | |
| 19 | 2, 9, 17, 18 | mp3an 1463 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ 3 < (2 · 2)) |
| 20 | 16, 19 | mpbir 231 | . . . 4 ⊢ (3 / 2) < 2 |
| 21 | df-2 12256 | . . . 4 ⊢ 2 = (1 + 1) | |
| 22 | 20, 21 | breqtri 5135 | . . 3 ⊢ (3 / 2) < (1 + 1) |
| 23 | 1z 12570 | . . . 4 ⊢ 1 ∈ ℤ | |
| 24 | flbi 13785 | . . . 4 ⊢ (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))) | |
| 25 | 3, 23, 24 | mp2an 692 | . . 3 ⊢ ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))) |
| 26 | 13, 22, 25 | mpbir2an 711 | . 2 ⊢ (⌊‘(3 / 2)) = 1 |
| 27 | 9 | renegcli 11490 | . . . 4 ⊢ -2 ∈ ℝ |
| 28 | 3 | renegcli 11490 | . . . 4 ⊢ -(3 / 2) ∈ ℝ |
| 29 | 3, 9 | ltnegi 11729 | . . . . 5 ⊢ ((3 / 2) < 2 ↔ -2 < -(3 / 2)) |
| 30 | 20, 29 | mpbi 230 | . . . 4 ⊢ -2 < -(3 / 2) |
| 31 | 27, 28, 30 | ltleii 11304 | . . 3 ⊢ -2 ≤ -(3 / 2) |
| 32 | 4 | negcli 11497 | . . . . . . 7 ⊢ -2 ∈ ℂ |
| 33 | ax-1cn 11133 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 34 | negdi2 11487 | . . . . . . 7 ⊢ ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1)) | |
| 35 | 32, 33, 34 | mp2an 692 | . . . . . 6 ⊢ -(-2 + 1) = (--2 − 1) |
| 36 | 4 | negnegi 11499 | . . . . . . 7 ⊢ --2 = 2 |
| 37 | 36 | oveq1i 7400 | . . . . . 6 ⊢ (--2 − 1) = (2 − 1) |
| 38 | 35, 37 | eqtri 2753 | . . . . 5 ⊢ -(-2 + 1) = (2 − 1) |
| 39 | 2m1e1 12314 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 40 | 39, 12 | eqbrtri 5131 | . . . . 5 ⊢ (2 − 1) < (3 / 2) |
| 41 | 38, 40 | eqbrtri 5131 | . . . 4 ⊢ -(-2 + 1) < (3 / 2) |
| 42 | 27, 1 | readdcli 11196 | . . . . 5 ⊢ (-2 + 1) ∈ ℝ |
| 43 | 42, 3 | ltnegcon1i 11736 | . . . 4 ⊢ (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1)) |
| 44 | 41, 43 | mpbi 230 | . . 3 ⊢ -(3 / 2) < (-2 + 1) |
| 45 | 2z 12572 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 46 | znegcl 12575 | . . . . 5 ⊢ (2 ∈ ℤ → -2 ∈ ℤ) | |
| 47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ -2 ∈ ℤ |
| 48 | flbi 13785 | . . . 4 ⊢ ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))) | |
| 49 | 28, 47, 48 | mp2an 692 | . . 3 ⊢ ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))) |
| 50 | 31, 44, 49 | mpbir2an 711 | . 2 ⊢ (⌊‘-(3 / 2)) = -2 |
| 51 | 26, 50 | pm3.2i 470 | 1 ⊢ ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 3c3 12249 4c4 12250 ℤcz 12536 ⌊cfl 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 |
| This theorem is referenced by: ex-ceil 30384 |
| Copyright terms: Public domain | W3C validator |