MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-fl Structured version   Visualization version   GIF version

Theorem ex-fl 30429
Description: Example for df-fl 13698. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-fl ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)

Proof of Theorem ex-fl
StepHypRef Expression
1 1re 11119 . . . 4 1 ∈ ℝ
2 3re 12212 . . . . 5 3 ∈ ℝ
32rehalfcli 12377 . . . 4 (3 / 2) ∈ ℝ
4 2cn 12207 . . . . . . 7 2 ∈ ℂ
54mullidi 11124 . . . . . 6 (1 · 2) = 2
6 2lt3 12299 . . . . . 6 2 < 3
75, 6eqbrtri 5114 . . . . 5 (1 · 2) < 3
8 2pos 12235 . . . . . 6 0 < 2
9 2re 12206 . . . . . . 7 2 ∈ ℝ
101, 2, 9ltmuldivi 12049 . . . . . 6 (0 < 2 → ((1 · 2) < 3 ↔ 1 < (3 / 2)))
118, 10ax-mp 5 . . . . 5 ((1 · 2) < 3 ↔ 1 < (3 / 2))
127, 11mpbi 230 . . . 4 1 < (3 / 2)
131, 3, 12ltleii 11243 . . 3 1 ≤ (3 / 2)
14 3lt4 12301 . . . . . 6 3 < 4
15 2t2e4 12291 . . . . . 6 (2 · 2) = 4
1614, 15breqtrri 5120 . . . . 5 3 < (2 · 2)
179, 8pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
18 ltdivmul 12004 . . . . . 6 ((3 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((3 / 2) < 2 ↔ 3 < (2 · 2)))
192, 9, 17, 18mp3an 1463 . . . . 5 ((3 / 2) < 2 ↔ 3 < (2 · 2))
2016, 19mpbir 231 . . . 4 (3 / 2) < 2
21 df-2 12195 . . . 4 2 = (1 + 1)
2220, 21breqtri 5118 . . 3 (3 / 2) < (1 + 1)
23 1z 12508 . . . 4 1 ∈ ℤ
24 flbi 13722 . . . 4 (((3 / 2) ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1))))
253, 23, 24mp2an 692 . . 3 ((⌊‘(3 / 2)) = 1 ↔ (1 ≤ (3 / 2) ∧ (3 / 2) < (1 + 1)))
2613, 22, 25mpbir2an 711 . 2 (⌊‘(3 / 2)) = 1
279renegcli 11429 . . . 4 -2 ∈ ℝ
283renegcli 11429 . . . 4 -(3 / 2) ∈ ℝ
293, 9ltnegi 11668 . . . . 5 ((3 / 2) < 2 ↔ -2 < -(3 / 2))
3020, 29mpbi 230 . . . 4 -2 < -(3 / 2)
3127, 28, 30ltleii 11243 . . 3 -2 ≤ -(3 / 2)
324negcli 11436 . . . . . . 7 -2 ∈ ℂ
33 ax-1cn 11071 . . . . . . 7 1 ∈ ℂ
34 negdi2 11426 . . . . . . 7 ((-2 ∈ ℂ ∧ 1 ∈ ℂ) → -(-2 + 1) = (--2 − 1))
3532, 33, 34mp2an 692 . . . . . 6 -(-2 + 1) = (--2 − 1)
364negnegi 11438 . . . . . . 7 --2 = 2
3736oveq1i 7362 . . . . . 6 (--2 − 1) = (2 − 1)
3835, 37eqtri 2756 . . . . 5 -(-2 + 1) = (2 − 1)
39 2m1e1 12253 . . . . . 6 (2 − 1) = 1
4039, 12eqbrtri 5114 . . . . 5 (2 − 1) < (3 / 2)
4138, 40eqbrtri 5114 . . . 4 -(-2 + 1) < (3 / 2)
4227, 1readdcli 11134 . . . . 5 (-2 + 1) ∈ ℝ
4342, 3ltnegcon1i 11675 . . . 4 (-(-2 + 1) < (3 / 2) ↔ -(3 / 2) < (-2 + 1))
4441, 43mpbi 230 . . 3 -(3 / 2) < (-2 + 1)
45 2z 12510 . . . . 5 2 ∈ ℤ
46 znegcl 12513 . . . . 5 (2 ∈ ℤ → -2 ∈ ℤ)
4745, 46ax-mp 5 . . . 4 -2 ∈ ℤ
48 flbi 13722 . . . 4 ((-(3 / 2) ∈ ℝ ∧ -2 ∈ ℤ) → ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1))))
4928, 47, 48mp2an 692 . . 3 ((⌊‘-(3 / 2)) = -2 ↔ (-2 ≤ -(3 / 2) ∧ -(3 / 2) < (-2 + 1)))
5031, 44, 49mpbir2an 711 . 2 (⌊‘-(3 / 2)) = -2
5126, 50pm3.2i 470 1 ((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351  -cneg 11352   / cdiv 11781  2c2 12187  3c3 12188  4c4 12189  cz 12475  cfl 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-n0 12389  df-z 12476  df-uz 12739  df-fl 13698
This theorem is referenced by:  ex-ceil  30430
  Copyright terms: Public domain W3C validator