| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fldgen | Structured version Visualization version GIF version | ||
| Description: Define a function generating the smallest sub-division-ring of a given ring containing a given set. If the base structure is a division ring, then this is also a division ring (see fldgensdrg 33313). If the base structure is a field, this is a subfield (see fldgenfld 33319 and fldsdrgfld 20763). In general this will be used in the context of fields, hence the name fldGen. (Contributed by Saveliy Skresanov and Thierry Arnoux, 9-Jan-2025.) |
| Ref | Expression |
|---|---|
| df-fldgen | ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfldgen 33309 | . 2 class fldGen | |
| 2 | vf | . . 3 setvar 𝑓 | |
| 3 | vs | . . 3 setvar 𝑠 | |
| 4 | cvv 3464 | . . 3 class V | |
| 5 | 3 | cv 1539 | . . . . . 6 class 𝑠 |
| 6 | va | . . . . . . 7 setvar 𝑎 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑎 |
| 8 | 5, 7 | wss 3931 | . . . . 5 wff 𝑠 ⊆ 𝑎 |
| 9 | 2 | cv 1539 | . . . . . 6 class 𝑓 |
| 10 | csdrg 20751 | . . . . . 6 class SubDRing | |
| 11 | 9, 10 | cfv 6536 | . . . . 5 class (SubDRing‘𝑓) |
| 12 | 8, 6, 11 | crab 3420 | . . . 4 class {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} |
| 13 | 12 | cint 4927 | . . 3 class ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} |
| 14 | 2, 3, 4, 4, 13 | cmpo 7412 | . 2 class (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) |
| 15 | 1, 14 | wceq 1540 | 1 wff fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: fldgenval 33311 |
| Copyright terms: Public domain | W3C validator |