| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldgenval | Structured version Visualization version GIF version | ||
| Description: Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| fldgenval.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldgenval.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| fldgenval.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| fldgenval | ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldgenval.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 2 | 1 | elexd 3460 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 3 | fldgenval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 6 | fldgenval.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 7 | 5, 6 | ssexd 5262 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 8 | 3 | sdrgid 20705 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐹)) |
| 10 | sseq2 3961 | . . . . 5 ⊢ (𝑎 = 𝐵 → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 = 𝐵) → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) |
| 12 | 9, 11, 6 | rspcedvd 3579 | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎) |
| 13 | intexrab 5285 | . . 3 ⊢ (∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎 ↔ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝜑 → ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑓 = 𝐹) | |
| 16 | 15 | fveq2d 6826 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (SubDRing‘𝑓) = (SubDRing‘𝐹)) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) | |
| 18 | 17 | sseq1d 3966 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝑎)) |
| 19 | 16, 18 | rabeqbidv 3413 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 20 | 19 | inteqd 4902 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 21 | df-fldgen 33272 | . . 3 ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | |
| 22 | 20, 21 | ovmpoga 7500 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑆 ∈ V ∧ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 23 | 2, 7, 14, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3902 ∩ cint 4897 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 DivRingcdr 20642 SubDRingcsdrg 20699 fldGen cfldgen 33271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mgp 20057 df-ur 20098 df-ring 20151 df-subrg 20483 df-drng 20644 df-sdrg 20700 df-fldgen 33272 |
| This theorem is referenced by: fldgenssid 33274 fldgensdrg 33275 fldgenssv 33276 fldgenss 33277 fldgenidfld 33278 fldgenssp 33279 primefldgen1 33282 evls1fldgencl 33678 |
| Copyright terms: Public domain | W3C validator |