| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldgenval | Structured version Visualization version GIF version | ||
| Description: Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| fldgenval.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldgenval.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| fldgenval.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| fldgenval | ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldgenval.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 2 | 1 | elexd 3461 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 3 | fldgenval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | fvexi 6842 | . . . 4 ⊢ 𝐵 ∈ V |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 6 | fldgenval.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 7 | 5, 6 | ssexd 5264 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 8 | 3 | sdrgid 20709 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐹)) |
| 10 | sseq2 3957 | . . . . 5 ⊢ (𝑎 = 𝐵 → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 = 𝐵) → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) |
| 12 | 9, 11, 6 | rspcedvd 3575 | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎) |
| 13 | intexrab 5287 | . . 3 ⊢ (∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎 ↔ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝜑 → ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑓 = 𝐹) | |
| 16 | 15 | fveq2d 6832 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (SubDRing‘𝑓) = (SubDRing‘𝐹)) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) | |
| 18 | 17 | sseq1d 3962 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝑎)) |
| 19 | 16, 18 | rabeqbidv 3414 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 20 | 19 | inteqd 4902 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 21 | df-fldgen 33284 | . . 3 ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | |
| 22 | 20, 21 | ovmpoga 7506 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑆 ∈ V ∧ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 23 | 2, 7, 14, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 Vcvv 3437 ⊆ wss 3898 ∩ cint 4897 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 DivRingcdr 20646 SubDRingcsdrg 20703 fldGen cfldgen 33283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mgp 20061 df-ur 20102 df-ring 20155 df-subrg 20487 df-drng 20648 df-sdrg 20704 df-fldgen 33284 |
| This theorem is referenced by: fldgenssid 33286 fldgensdrg 33287 fldgenssv 33288 fldgenss 33289 fldgenidfld 33290 fldgenssp 33291 primefldgen1 33294 evls1fldgencl 33704 |
| Copyright terms: Public domain | W3C validator |