Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenval Structured version   Visualization version   GIF version

Theorem fldgenval 33314
Description: Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenval.3 (𝜑𝑆𝐵)
Assertion
Ref Expression
fldgenval (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
Distinct variable groups:   𝐵,𝑎   𝐹,𝑎   𝑆,𝑎   𝜑,𝑎

Proof of Theorem fldgenval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
21elexd 3504 . 2 (𝜑𝐹 ∈ V)
3 fldgenval.1 . . . . 5 𝐵 = (Base‘𝐹)
43fvexi 6920 . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝜑𝐵 ∈ V)
6 fldgenval.3 . . 3 (𝜑𝑆𝐵)
75, 6ssexd 5324 . 2 (𝜑𝑆 ∈ V)
83sdrgid 20793 . . . . 5 (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹))
91, 8syl 17 . . . 4 (𝜑𝐵 ∈ (SubDRing‘𝐹))
10 sseq2 4010 . . . . 5 (𝑎 = 𝐵 → (𝑆𝑎𝑆𝐵))
1110adantl 481 . . . 4 ((𝜑𝑎 = 𝐵) → (𝑆𝑎𝑆𝐵))
129, 11, 6rspcedvd 3624 . . 3 (𝜑 → ∃𝑎 ∈ (SubDRing‘𝐹)𝑆𝑎)
13 intexrab 5347 . . 3 (∃𝑎 ∈ (SubDRing‘𝐹)𝑆𝑎 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ V)
1412, 13sylib 218 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ V)
15 simpl 482 . . . . . 6 ((𝑓 = 𝐹𝑠 = 𝑆) → 𝑓 = 𝐹)
1615fveq2d 6910 . . . . 5 ((𝑓 = 𝐹𝑠 = 𝑆) → (SubDRing‘𝑓) = (SubDRing‘𝐹))
17 simpr 484 . . . . . 6 ((𝑓 = 𝐹𝑠 = 𝑆) → 𝑠 = 𝑆)
1817sseq1d 4015 . . . . 5 ((𝑓 = 𝐹𝑠 = 𝑆) → (𝑠𝑎𝑆𝑎))
1916, 18rabeqbidv 3455 . . . 4 ((𝑓 = 𝐹𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
2019inteqd 4951 . . 3 ((𝑓 = 𝐹𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
21 df-fldgen 33313 . . 3 fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎})
2220, 21ovmpoga 7587 . 2 ((𝐹 ∈ V ∧ 𝑆 ∈ V ∧ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ V) → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
232, 7, 14, 22syl3anc 1373 1 (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  Vcvv 3480  wss 3951   cint 4946  cfv 6561  (class class class)co 7431  Basecbs 17247  DivRingcdr 20729  SubDRingcsdrg 20787   fldGen cfldgen 33312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mgp 20138  df-ur 20179  df-ring 20232  df-subrg 20570  df-drng 20731  df-sdrg 20788  df-fldgen 33313
This theorem is referenced by:  fldgenssid  33315  fldgensdrg  33316  fldgenssv  33317  fldgenss  33318  fldgenidfld  33319  fldgenssp  33320  primefldgen1  33323  evls1fldgencl  33720
  Copyright terms: Public domain W3C validator