| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldgenval | Structured version Visualization version GIF version | ||
| Description: Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| fldgenval.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldgenval.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| fldgenval.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| fldgenval | ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldgenval.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 2 | 1 | elexd 3504 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 3 | fldgenval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | fvexi 6920 | . . . 4 ⊢ 𝐵 ∈ V |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 6 | fldgenval.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 7 | 5, 6 | ssexd 5324 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 8 | 3 | sdrgid 20793 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐹)) |
| 10 | sseq2 4010 | . . . . 5 ⊢ (𝑎 = 𝐵 → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 = 𝐵) → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) |
| 12 | 9, 11, 6 | rspcedvd 3624 | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎) |
| 13 | intexrab 5347 | . . 3 ⊢ (∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎 ↔ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝜑 → ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑓 = 𝐹) | |
| 16 | 15 | fveq2d 6910 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (SubDRing‘𝑓) = (SubDRing‘𝐹)) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) | |
| 18 | 17 | sseq1d 4015 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝑎)) |
| 19 | 16, 18 | rabeqbidv 3455 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 20 | 19 | inteqd 4951 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 21 | df-fldgen 33313 | . . 3 ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | |
| 22 | 20, 21 | ovmpoga 7587 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑆 ∈ V ∧ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 23 | 2, 7, 14, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 Vcvv 3480 ⊆ wss 3951 ∩ cint 4946 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 DivRingcdr 20729 SubDRingcsdrg 20787 fldGen cfldgen 33312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mgp 20138 df-ur 20179 df-ring 20232 df-subrg 20570 df-drng 20731 df-sdrg 20788 df-fldgen 33313 |
| This theorem is referenced by: fldgenssid 33315 fldgensdrg 33316 fldgenssv 33317 fldgenss 33318 fldgenidfld 33319 fldgenssp 33320 primefldgen1 33323 evls1fldgencl 33720 |
| Copyright terms: Public domain | W3C validator |