| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldgenval | Structured version Visualization version GIF version | ||
| Description: Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
| Ref | Expression |
|---|---|
| fldgenval.1 | ⊢ 𝐵 = (Base‘𝐹) |
| fldgenval.2 | ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| fldgenval.3 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| fldgenval | ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fldgenval.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ DivRing) | |
| 2 | 1 | elexd 3483 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 3 | fldgenval.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 3 | fvexi 6890 | . . . 4 ⊢ 𝐵 ∈ V |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 6 | fldgenval.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 7 | 5, 6 | ssexd 5294 | . 2 ⊢ (𝜑 → 𝑆 ∈ V) |
| 8 | 3 | sdrgid 20752 | . . . . 5 ⊢ (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐹)) |
| 10 | sseq2 3985 | . . . . 5 ⊢ (𝑎 = 𝐵 → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 = 𝐵) → (𝑆 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝐵)) |
| 12 | 9, 11, 6 | rspcedvd 3603 | . . 3 ⊢ (𝜑 → ∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎) |
| 13 | intexrab 5317 | . . 3 ⊢ (∃𝑎 ∈ (SubDRing‘𝐹)𝑆 ⊆ 𝑎 ↔ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) | |
| 14 | 12, 13 | sylib 218 | . 2 ⊢ (𝜑 → ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) |
| 15 | simpl 482 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑓 = 𝐹) | |
| 16 | 15 | fveq2d 6880 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (SubDRing‘𝑓) = (SubDRing‘𝐹)) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) | |
| 18 | 17 | sseq1d 3990 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → (𝑠 ⊆ 𝑎 ↔ 𝑆 ⊆ 𝑎)) |
| 19 | 16, 18 | rabeqbidv 3434 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 20 | 19 | inteqd 4927 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑠 = 𝑆) → ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎} = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 21 | df-fldgen 33305 | . . 3 ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠 ⊆ 𝑎}) | |
| 22 | 20, 21 | ovmpoga 7561 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑆 ∈ V ∧ ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎} ∈ V) → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| 23 | 2, 7, 14, 22 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐹 fldGen 𝑆) = ∩ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆 ⊆ 𝑎}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∩ cint 4922 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 DivRingcdr 20689 SubDRingcsdrg 20746 fldGen cfldgen 33304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mgp 20101 df-ur 20142 df-ring 20195 df-subrg 20530 df-drng 20691 df-sdrg 20747 df-fldgen 33305 |
| This theorem is referenced by: fldgenssid 33307 fldgensdrg 33308 fldgenssv 33309 fldgenss 33310 fldgenidfld 33311 fldgenssp 33312 primefldgen1 33315 evls1fldgencl 33711 |
| Copyright terms: Public domain | W3C validator |