Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenval Structured version   Visualization version   GIF version

Theorem fldgenval 33273
Description: Value of the field generating function: (𝐹 fldGen 𝑆) is the smallest sub-division-ring of 𝐹 containing 𝑆. (Contributed by Thierry Arnoux, 11-Jan-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenval.3 (𝜑𝑆𝐵)
Assertion
Ref Expression
fldgenval (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
Distinct variable groups:   𝐵,𝑎   𝐹,𝑎   𝑆,𝑎   𝜑,𝑎

Proof of Theorem fldgenval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
21elexd 3460 . 2 (𝜑𝐹 ∈ V)
3 fldgenval.1 . . . . 5 𝐵 = (Base‘𝐹)
43fvexi 6836 . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝜑𝐵 ∈ V)
6 fldgenval.3 . . 3 (𝜑𝑆𝐵)
75, 6ssexd 5262 . 2 (𝜑𝑆 ∈ V)
83sdrgid 20705 . . . . 5 (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹))
91, 8syl 17 . . . 4 (𝜑𝐵 ∈ (SubDRing‘𝐹))
10 sseq2 3961 . . . . 5 (𝑎 = 𝐵 → (𝑆𝑎𝑆𝐵))
1110adantl 481 . . . 4 ((𝜑𝑎 = 𝐵) → (𝑆𝑎𝑆𝐵))
129, 11, 6rspcedvd 3579 . . 3 (𝜑 → ∃𝑎 ∈ (SubDRing‘𝐹)𝑆𝑎)
13 intexrab 5285 . . 3 (∃𝑎 ∈ (SubDRing‘𝐹)𝑆𝑎 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ V)
1412, 13sylib 218 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ V)
15 simpl 482 . . . . . 6 ((𝑓 = 𝐹𝑠 = 𝑆) → 𝑓 = 𝐹)
1615fveq2d 6826 . . . . 5 ((𝑓 = 𝐹𝑠 = 𝑆) → (SubDRing‘𝑓) = (SubDRing‘𝐹))
17 simpr 484 . . . . . 6 ((𝑓 = 𝐹𝑠 = 𝑆) → 𝑠 = 𝑆)
1817sseq1d 3966 . . . . 5 ((𝑓 = 𝐹𝑠 = 𝑆) → (𝑠𝑎𝑆𝑎))
1916, 18rabeqbidv 3413 . . . 4 ((𝑓 = 𝐹𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
2019inteqd 4902 . . 3 ((𝑓 = 𝐹𝑠 = 𝑆) → {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎} = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
21 df-fldgen 33272 . . 3 fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎})
2220, 21ovmpoga 7500 . 2 ((𝐹 ∈ V ∧ 𝑆 ∈ V ∧ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ V) → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
232, 7, 14, 22syl3anc 1373 1 (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  Vcvv 3436  wss 3902   cint 4897  cfv 6481  (class class class)co 7346  Basecbs 17117  DivRingcdr 20642  SubDRingcsdrg 20699   fldGen cfldgen 33271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mgp 20057  df-ur 20098  df-ring 20151  df-subrg 20483  df-drng 20644  df-sdrg 20700  df-fldgen 33272
This theorem is referenced by:  fldgenssid  33274  fldgensdrg  33275  fldgenssv  33276  fldgenss  33277  fldgenidfld  33278  fldgenssp  33279  primefldgen1  33282  evls1fldgencl  33678
  Copyright terms: Public domain W3C validator