Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgensdrg Structured version   Visualization version   GIF version

Theorem fldgensdrg 33324
Description: A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenval.3 (𝜑𝑆𝐵)
Assertion
Ref Expression
fldgensdrg (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹))

Proof of Theorem fldgensdrg
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldgenval.1 . . 3 𝐵 = (Base‘𝐹)
2 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
3 fldgenval.3 . . 3 (𝜑𝑆𝐵)
41, 2, 3fldgenval 33322 . 2 (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
52drngringd 20661 . . . 4 (𝜑𝐹 ∈ Ring)
6 eqid 2733 . . . . . 6 (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) = (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
7 sseq2 3957 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑆𝑎𝑆𝑥))
87elrab 3643 . . . . . . . . . . . 12 (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ↔ (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
98biimpi 216 . . . . . . . . . . 11 (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
109adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
1110simpld 494 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → 𝑥 ∈ (SubDRing‘𝐹))
12 issdrg 20712 . . . . . . . . . 10 (𝑥 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑥 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑥) ∈ DivRing))
1312simp2bi 1146 . . . . . . . . 9 (𝑥 ∈ (SubDRing‘𝐹) → 𝑥 ∈ (SubRing‘𝐹))
1411, 13syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → 𝑥 ∈ (SubRing‘𝐹))
1514ex 412 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → 𝑥 ∈ (SubRing‘𝐹)))
1615ssrdv 3936 . . . . . 6 (𝜑 → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ (SubRing‘𝐹))
17 sseq2 3957 . . . . . . . 8 (𝑎 = 𝐵 → (𝑆𝑎𝑆𝐵))
181sdrgid 20716 . . . . . . . . 9 (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹))
192, 18syl 17 . . . . . . . 8 (𝜑𝐵 ∈ (SubDRing‘𝐹))
2017, 19, 3elrabd 3645 . . . . . . 7 (𝜑𝐵 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
2120ne0d 4291 . . . . . 6 (𝜑 → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ≠ ∅)
2212simp3bi 1147 . . . . . . 7 (𝑥 ∈ (SubDRing‘𝐹) → (𝐹s 𝑥) ∈ DivRing)
2311, 22syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → (𝐹s 𝑥) ∈ DivRing)
246, 2, 16, 21, 23subdrgint 20727 . . . . 5 (𝜑 → (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ DivRing)
2524drngringd 20661 . . . 4 (𝜑 → (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring)
26 intss1 4915 . . . . 5 (𝐵 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵)
2720, 26syl 17 . . . 4 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵)
28 issdrg 20712 . . . . . . . . . 10 (𝑎 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑎 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑎) ∈ DivRing))
2928simp2bi 1146 . . . . . . . . 9 (𝑎 ∈ (SubDRing‘𝐹) → 𝑎 ∈ (SubRing‘𝐹))
30 eqid 2733 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3130subrg1cl 20504 . . . . . . . . 9 (𝑎 ∈ (SubRing‘𝐹) → (1r𝐹) ∈ 𝑎)
3229, 31syl 17 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐹) → (1r𝐹) ∈ 𝑎)
3332ad2antlr 727 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐹)) ∧ 𝑆𝑎) → (1r𝐹) ∈ 𝑎)
3433ex 412 . . . . . 6 ((𝜑𝑎 ∈ (SubDRing‘𝐹)) → (𝑆𝑎 → (1r𝐹) ∈ 𝑎))
3534ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐹)(𝑆𝑎 → (1r𝐹) ∈ 𝑎))
36 fvex 6844 . . . . . 6 (1r𝐹) ∈ V
3736elintrab 4912 . . . . 5 ((1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐹)(𝑆𝑎 → (1r𝐹) ∈ 𝑎))
3835, 37sylibr 234 . . . 4 (𝜑 → (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
391, 30issubrg 20495 . . . . 5 ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹) ↔ ((𝐹 ∈ Ring ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring) ∧ ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵 ∧ (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})))
4039biimpri 228 . . . 4 (((𝐹 ∈ Ring ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring) ∧ ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵 ∧ (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})) → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹))
415, 25, 27, 38, 40syl22anc 838 . . 3 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹))
42 issdrg 20712 . . 3 ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹) ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ DivRing))
432, 41, 24, 42syl3anbrc 1344 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubDRing‘𝐹))
444, 43eqeltrd 2833 1 (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  wss 3898   cint 4899  cfv 6489  (class class class)co 7355  Basecbs 17127  s cress 17148  1rcur 20107  Ringcrg 20159  SubRingcsubrg 20493  DivRingcdr 20653  SubDRingcsdrg 20710   fldGen cfldgen 33320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-subg 19044  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-subrng 20470  df-subrg 20494  df-drng 20655  df-sdrg 20711  df-fldgen 33321
This theorem is referenced by:  fldgenfld  33330  1fldgenq  33332  fldextrspunlem2  33762  fldextrspundgdvdslem  33765  fldextrspundgdvds  33766  algextdeglem2  33803  algextdeglem4  33805  algextdeglem5  33806  constrextdg2lem  33833  constrext2chnlem  33835
  Copyright terms: Public domain W3C validator