Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgensdrg Structured version   Visualization version   GIF version

Theorem fldgensdrg 33266
Description: A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenval.3 (𝜑𝑆𝐵)
Assertion
Ref Expression
fldgensdrg (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹))

Proof of Theorem fldgensdrg
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldgenval.1 . . 3 𝐵 = (Base‘𝐹)
2 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
3 fldgenval.3 . . 3 (𝜑𝑆𝐵)
41, 2, 3fldgenval 33264 . 2 (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
52drngringd 20640 . . . 4 (𝜑𝐹 ∈ Ring)
6 eqid 2729 . . . . . 6 (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) = (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
7 sseq2 3964 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑆𝑎𝑆𝑥))
87elrab 3650 . . . . . . . . . . . 12 (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ↔ (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
98biimpi 216 . . . . . . . . . . 11 (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
109adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
1110simpld 494 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → 𝑥 ∈ (SubDRing‘𝐹))
12 issdrg 20691 . . . . . . . . . 10 (𝑥 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑥 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑥) ∈ DivRing))
1312simp2bi 1146 . . . . . . . . 9 (𝑥 ∈ (SubDRing‘𝐹) → 𝑥 ∈ (SubRing‘𝐹))
1411, 13syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → 𝑥 ∈ (SubRing‘𝐹))
1514ex 412 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → 𝑥 ∈ (SubRing‘𝐹)))
1615ssrdv 3943 . . . . . 6 (𝜑 → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ (SubRing‘𝐹))
17 sseq2 3964 . . . . . . . 8 (𝑎 = 𝐵 → (𝑆𝑎𝑆𝐵))
181sdrgid 20695 . . . . . . . . 9 (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹))
192, 18syl 17 . . . . . . . 8 (𝜑𝐵 ∈ (SubDRing‘𝐹))
2017, 19, 3elrabd 3652 . . . . . . 7 (𝜑𝐵 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
2120ne0d 4295 . . . . . 6 (𝜑 → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ≠ ∅)
2212simp3bi 1147 . . . . . . 7 (𝑥 ∈ (SubDRing‘𝐹) → (𝐹s 𝑥) ∈ DivRing)
2311, 22syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → (𝐹s 𝑥) ∈ DivRing)
246, 2, 16, 21, 23subdrgint 20706 . . . . 5 (𝜑 → (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ DivRing)
2524drngringd 20640 . . . 4 (𝜑 → (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring)
26 intss1 4916 . . . . 5 (𝐵 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵)
2720, 26syl 17 . . . 4 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵)
28 issdrg 20691 . . . . . . . . . 10 (𝑎 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑎 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑎) ∈ DivRing))
2928simp2bi 1146 . . . . . . . . 9 (𝑎 ∈ (SubDRing‘𝐹) → 𝑎 ∈ (SubRing‘𝐹))
30 eqid 2729 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3130subrg1cl 20483 . . . . . . . . 9 (𝑎 ∈ (SubRing‘𝐹) → (1r𝐹) ∈ 𝑎)
3229, 31syl 17 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐹) → (1r𝐹) ∈ 𝑎)
3332ad2antlr 727 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐹)) ∧ 𝑆𝑎) → (1r𝐹) ∈ 𝑎)
3433ex 412 . . . . . 6 ((𝜑𝑎 ∈ (SubDRing‘𝐹)) → (𝑆𝑎 → (1r𝐹) ∈ 𝑎))
3534ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐹)(𝑆𝑎 → (1r𝐹) ∈ 𝑎))
36 fvex 6839 . . . . . 6 (1r𝐹) ∈ V
3736elintrab 4913 . . . . 5 ((1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐹)(𝑆𝑎 → (1r𝐹) ∈ 𝑎))
3835, 37sylibr 234 . . . 4 (𝜑 → (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
391, 30issubrg 20474 . . . . 5 ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹) ↔ ((𝐹 ∈ Ring ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring) ∧ ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵 ∧ (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})))
4039biimpri 228 . . . 4 (((𝐹 ∈ Ring ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring) ∧ ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵 ∧ (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})) → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹))
415, 25, 27, 38, 40syl22anc 838 . . 3 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹))
42 issdrg 20691 . . 3 ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹) ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ DivRing))
432, 41, 24, 42syl3anbrc 1344 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubDRing‘𝐹))
444, 43eqeltrd 2828 1 (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905   cint 4899  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  1rcur 20084  Ringcrg 20136  SubRingcsubrg 20472  DivRingcdr 20632  SubDRingcsdrg 20689   fldGen cfldgen 33262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-subrng 20449  df-subrg 20473  df-drng 20634  df-sdrg 20690  df-fldgen 33263
This theorem is referenced by:  fldgenfld  33272  1fldgenq  33274  fldextrspunlem2  33651  fldextrspundgdvdslem  33654  fldextrspundgdvds  33655  algextdeglem2  33687  algextdeglem4  33689  algextdeglem5  33690  constrextdg2lem  33717  constrext2chnlem  33719
  Copyright terms: Public domain W3C validator