Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgensdrg Structured version   Visualization version   GIF version

Theorem fldgensdrg 33164
Description: A generated subfield is a sub-division-ring. (Contributed by Thierry Arnoux, 11-Jan-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenval.3 (𝜑𝑆𝐵)
Assertion
Ref Expression
fldgensdrg (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹))

Proof of Theorem fldgensdrg
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldgenval.1 . . 3 𝐵 = (Base‘𝐹)
2 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
3 fldgenval.3 . . 3 (𝜑𝑆𝐵)
41, 2, 3fldgenval 33162 . 2 (𝜑 → (𝐹 fldGen 𝑆) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
52drngringd 20715 . . . 4 (𝜑𝐹 ∈ Ring)
6 eqid 2726 . . . . . 6 (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) = (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
7 sseq2 4006 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑆𝑎𝑆𝑥))
87elrab 3681 . . . . . . . . . . . 12 (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ↔ (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
98biimpi 215 . . . . . . . . . . 11 (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
109adantl 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → (𝑥 ∈ (SubDRing‘𝐹) ∧ 𝑆𝑥))
1110simpld 493 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → 𝑥 ∈ (SubDRing‘𝐹))
12 issdrg 20767 . . . . . . . . . 10 (𝑥 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑥 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑥) ∈ DivRing))
1312simp2bi 1143 . . . . . . . . 9 (𝑥 ∈ (SubDRing‘𝐹) → 𝑥 ∈ (SubRing‘𝐹))
1411, 13syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → 𝑥 ∈ (SubRing‘𝐹))
1514ex 411 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → 𝑥 ∈ (SubRing‘𝐹)))
1615ssrdv 3985 . . . . . 6 (𝜑 → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ (SubRing‘𝐹))
17 sseq2 4006 . . . . . . . 8 (𝑎 = 𝐵 → (𝑆𝑎𝑆𝐵))
181sdrgid 20771 . . . . . . . . 9 (𝐹 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝐹))
192, 18syl 17 . . . . . . . 8 (𝜑𝐵 ∈ (SubDRing‘𝐹))
2017, 19, 3elrabd 3683 . . . . . . 7 (𝜑𝐵 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
2120ne0d 4338 . . . . . 6 (𝜑 → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ≠ ∅)
2212simp3bi 1144 . . . . . . 7 (𝑥 ∈ (SubDRing‘𝐹) → (𝐹s 𝑥) ∈ DivRing)
2311, 22syl 17 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) → (𝐹s 𝑥) ∈ DivRing)
246, 2, 16, 21, 23subdrgint 20782 . . . . 5 (𝜑 → (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ DivRing)
2524drngringd 20715 . . . 4 (𝜑 → (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring)
26 intss1 4971 . . . . 5 (𝐵 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵)
2720, 26syl 17 . . . 4 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵)
28 issdrg 20767 . . . . . . . . . 10 (𝑎 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑎 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑎) ∈ DivRing))
2928simp2bi 1143 . . . . . . . . 9 (𝑎 ∈ (SubDRing‘𝐹) → 𝑎 ∈ (SubRing‘𝐹))
30 eqid 2726 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3130subrg1cl 20564 . . . . . . . . 9 (𝑎 ∈ (SubRing‘𝐹) → (1r𝐹) ∈ 𝑎)
3229, 31syl 17 . . . . . . . 8 (𝑎 ∈ (SubDRing‘𝐹) → (1r𝐹) ∈ 𝑎)
3332ad2antlr 725 . . . . . . 7 (((𝜑𝑎 ∈ (SubDRing‘𝐹)) ∧ 𝑆𝑎) → (1r𝐹) ∈ 𝑎)
3433ex 411 . . . . . 6 ((𝜑𝑎 ∈ (SubDRing‘𝐹)) → (𝑆𝑎 → (1r𝐹) ∈ 𝑎))
3534ralrimiva 3136 . . . . 5 (𝜑 → ∀𝑎 ∈ (SubDRing‘𝐹)(𝑆𝑎 → (1r𝐹) ∈ 𝑎))
36 fvex 6914 . . . . . 6 (1r𝐹) ∈ V
3736elintrab 4968 . . . . 5 ((1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ↔ ∀𝑎 ∈ (SubDRing‘𝐹)(𝑆𝑎 → (1r𝐹) ∈ 𝑎))
3835, 37sylibr 233 . . . 4 (𝜑 → (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})
391, 30issubrg 20555 . . . . 5 ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹) ↔ ((𝐹 ∈ Ring ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring) ∧ ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵 ∧ (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})))
4039biimpri 227 . . . 4 (((𝐹 ∈ Ring ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ Ring) ∧ ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ⊆ 𝐵 ∧ (1r𝐹) ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎})) → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹))
415, 25, 27, 38, 40syl22anc 837 . . 3 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹))
42 issdrg 20767 . . 3 ( {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubRing‘𝐹) ∧ (𝐹s {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎}) ∈ DivRing))
432, 41, 24, 42syl3anbrc 1340 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑆𝑎} ∈ (SubDRing‘𝐹))
444, 43eqeltrd 2826 1 (𝜑 → (𝐹 fldGen 𝑆) ∈ (SubDRing‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  {crab 3419  wss 3947   cint 4954  cfv 6554  (class class class)co 7424  Basecbs 17213  s cress 17242  1rcur 20164  Ringcrg 20216  SubRingcsubrg 20551  DivRingcdr 20707  SubDRingcsdrg 20765   fldGen cfldgen 33160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-subg 19117  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-dvr 20383  df-subrng 20528  df-subrg 20553  df-drng 20709  df-sdrg 20766  df-fldgen 33161
This theorem is referenced by:  fldgenfld  33170  1fldgenq  33172  algextdeglem2  33585  algextdeglem4  33587  algextdeglem5  33588
  Copyright terms: Public domain W3C validator