Step | Hyp | Ref
| Expression |
1 | | fldgenval.1 |
. . 3
β’ π΅ = (BaseβπΉ) |
2 | | fldgenval.2 |
. . 3
β’ (π β πΉ β DivRing) |
3 | | fldgenval.3 |
. . 3
β’ (π β π β π΅) |
4 | 1, 2, 3 | fldgenval 32673 |
. 2
β’ (π β (πΉ fldGen π) = β© {π β (SubDRingβπΉ) β£ π β π}) |
5 | 2 | drngringd 20509 |
. . . 4
β’ (π β πΉ β Ring) |
6 | | eqid 2731 |
. . . . . 6
β’ (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) = (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) |
7 | | sseq2 4008 |
. . . . . . . . . . . . 13
β’ (π = π₯ β (π β π β π β π₯)) |
8 | 7 | elrab 3683 |
. . . . . . . . . . . 12
β’ (π₯ β {π β (SubDRingβπΉ) β£ π β π} β (π₯ β (SubDRingβπΉ) β§ π β π₯)) |
9 | 8 | biimpi 215 |
. . . . . . . . . . 11
β’ (π₯ β {π β (SubDRingβπΉ) β£ π β π} β (π₯ β (SubDRingβπΉ) β§ π β π₯)) |
10 | 9 | adantl 481 |
. . . . . . . . . 10
β’ ((π β§ π₯ β {π β (SubDRingβπΉ) β£ π β π}) β (π₯ β (SubDRingβπΉ) β§ π β π₯)) |
11 | 10 | simpld 494 |
. . . . . . . . 9
β’ ((π β§ π₯ β {π β (SubDRingβπΉ) β£ π β π}) β π₯ β (SubDRingβπΉ)) |
12 | | issdrg 20548 |
. . . . . . . . . 10
β’ (π₯ β (SubDRingβπΉ) β (πΉ β DivRing β§ π₯ β (SubRingβπΉ) β§ (πΉ βΎs π₯) β DivRing)) |
13 | 12 | simp2bi 1145 |
. . . . . . . . 9
β’ (π₯ β (SubDRingβπΉ) β π₯ β (SubRingβπΉ)) |
14 | 11, 13 | syl 17 |
. . . . . . . 8
β’ ((π β§ π₯ β {π β (SubDRingβπΉ) β£ π β π}) β π₯ β (SubRingβπΉ)) |
15 | 14 | ex 412 |
. . . . . . 7
β’ (π β (π₯ β {π β (SubDRingβπΉ) β£ π β π} β π₯ β (SubRingβπΉ))) |
16 | 15 | ssrdv 3988 |
. . . . . 6
β’ (π β {π β (SubDRingβπΉ) β£ π β π} β (SubRingβπΉ)) |
17 | | sseq2 4008 |
. . . . . . . 8
β’ (π = π΅ β (π β π β π β π΅)) |
18 | 1 | sdrgid 20552 |
. . . . . . . . 9
β’ (πΉ β DivRing β π΅ β (SubDRingβπΉ)) |
19 | 2, 18 | syl 17 |
. . . . . . . 8
β’ (π β π΅ β (SubDRingβπΉ)) |
20 | 17, 19, 3 | elrabd 3685 |
. . . . . . 7
β’ (π β π΅ β {π β (SubDRingβπΉ) β£ π β π}) |
21 | 20 | ne0d 4335 |
. . . . . 6
β’ (π β {π β (SubDRingβπΉ) β£ π β π} β β
) |
22 | 12 | simp3bi 1146 |
. . . . . . 7
β’ (π₯ β (SubDRingβπΉ) β (πΉ βΎs π₯) β DivRing) |
23 | 11, 22 | syl 17 |
. . . . . 6
β’ ((π β§ π₯ β {π β (SubDRingβπΉ) β£ π β π}) β (πΉ βΎs π₯) β DivRing) |
24 | 6, 2, 16, 21, 23 | subdrgint 20563 |
. . . . 5
β’ (π β (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) β
DivRing) |
25 | 24 | drngringd 20509 |
. . . 4
β’ (π β (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) β Ring) |
26 | | intss1 4967 |
. . . . 5
β’ (π΅ β {π β (SubDRingβπΉ) β£ π β π} β β© {π β (SubDRingβπΉ) β£ π β π} β π΅) |
27 | 20, 26 | syl 17 |
. . . 4
β’ (π β β© {π
β (SubDRingβπΉ)
β£ π β π} β π΅) |
28 | | issdrg 20548 |
. . . . . . . . . 10
β’ (π β (SubDRingβπΉ) β (πΉ β DivRing β§ π β (SubRingβπΉ) β§ (πΉ βΎs π) β DivRing)) |
29 | 28 | simp2bi 1145 |
. . . . . . . . 9
β’ (π β (SubDRingβπΉ) β π β (SubRingβπΉ)) |
30 | | eqid 2731 |
. . . . . . . . . 10
β’
(1rβπΉ) = (1rβπΉ) |
31 | 30 | subrg1cl 20471 |
. . . . . . . . 9
β’ (π β (SubRingβπΉ) β
(1rβπΉ)
β π) |
32 | 29, 31 | syl 17 |
. . . . . . . 8
β’ (π β (SubDRingβπΉ) β
(1rβπΉ)
β π) |
33 | 32 | ad2antlr 724 |
. . . . . . 7
β’ (((π β§ π β (SubDRingβπΉ)) β§ π β π) β (1rβπΉ) β π) |
34 | 33 | ex 412 |
. . . . . 6
β’ ((π β§ π β (SubDRingβπΉ)) β (π β π β (1rβπΉ) β π)) |
35 | 34 | ralrimiva 3145 |
. . . . 5
β’ (π β βπ β (SubDRingβπΉ)(π β π β (1rβπΉ) β π)) |
36 | | fvex 6904 |
. . . . . 6
β’
(1rβπΉ) β V |
37 | 36 | elintrab 4964 |
. . . . 5
β’
((1rβπΉ) β β© {π β (SubDRingβπΉ) β£ π β π} β βπ β (SubDRingβπΉ)(π β π β (1rβπΉ) β π)) |
38 | 35, 37 | sylibr 233 |
. . . 4
β’ (π β (1rβπΉ) β β© {π
β (SubDRingβπΉ)
β£ π β π}) |
39 | 1, 30 | issubrg 20462 |
. . . . 5
β’ (β© {π
β (SubDRingβπΉ)
β£ π β π} β (SubRingβπΉ) β ((πΉ β Ring β§ (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) β Ring) β§ (β© {π
β (SubDRingβπΉ)
β£ π β π} β π΅ β§ (1rβπΉ) β β© {π
β (SubDRingβπΉ)
β£ π β π}))) |
40 | 39 | biimpri 227 |
. . . 4
β’ (((πΉ β Ring β§ (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) β Ring) β§ (β© {π
β (SubDRingβπΉ)
β£ π β π} β π΅ β§ (1rβπΉ) β β© {π
β (SubDRingβπΉ)
β£ π β π})) β β© {π
β (SubDRingβπΉ)
β£ π β π} β (SubRingβπΉ)) |
41 | 5, 25, 27, 38, 40 | syl22anc 836 |
. . 3
β’ (π β β© {π
β (SubDRingβπΉ)
β£ π β π} β (SubRingβπΉ)) |
42 | | issdrg 20548 |
. . 3
β’ (β© {π
β (SubDRingβπΉ)
β£ π β π} β (SubDRingβπΉ) β (πΉ β DivRing β§ β© {π
β (SubDRingβπΉ)
β£ π β π} β (SubRingβπΉ) β§ (πΉ βΎs β© {π
β (SubDRingβπΉ)
β£ π β π}) β
DivRing)) |
43 | 2, 41, 24, 42 | syl3anbrc 1342 |
. 2
β’ (π β β© {π
β (SubDRingβπΉ)
β£ π β π} β (SubDRingβπΉ)) |
44 | 4, 43 | eqeltrd 2832 |
1
β’ (π β (πΉ fldGen π) β (SubDRingβπΉ)) |