![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fldsdrgfld | Structured version Visualization version GIF version |
Description: A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
Ref | Expression |
---|---|
fldsdrgfld | ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg 20639 | . . . 4 ⊢ (𝐴 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝐹) ∧ (𝐹 ↾s 𝐴) ∈ DivRing)) | |
2 | 1 | simp3bi 1144 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝐹) → (𝐹 ↾s 𝐴) ∈ DivRing) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ DivRing) |
4 | isfld 20598 | . . . 4 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ Field → 𝐹 ∈ CRing) |
6 | 1 | simp2bi 1143 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝐹) → 𝐴 ∈ (SubRing‘𝐹)) |
7 | eqid 2726 | . . . 4 ⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) | |
8 | 7 | subrgcrng 20477 | . . 3 ⊢ ((𝐹 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ CRing) |
9 | 5, 6, 8 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ CRing) |
10 | isfld 20598 | . 2 ⊢ ((𝐹 ↾s 𝐴) ∈ Field ↔ ((𝐹 ↾s 𝐴) ∈ DivRing ∧ (𝐹 ↾s 𝐴) ∈ CRing)) | |
11 | 3, 9, 10 | sylanbrc 582 | 1 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ‘cfv 6537 (class class class)co 7405 ↾s cress 17182 CRingccrg 20139 SubRingcsubrg 20469 DivRingcdr 20587 Fieldcfield 20588 SubDRingcsdrg 20637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-cmn 19702 df-mgp 20040 df-ring 20140 df-cring 20141 df-subrg 20471 df-field 20590 df-sdrg 20638 |
This theorem is referenced by: fldgenfld 32913 irngnzply1lem 33273 minplyirredlem 33289 minplyirred 33290 irredminply 33293 algextdeglem4 33297 algextdeglem7 33300 algextdeglem8 33301 |
Copyright terms: Public domain | W3C validator |