![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fldsdrgfld | Structured version Visualization version GIF version |
Description: A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025.) |
Ref | Expression |
---|---|
fldsdrgfld | ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg 20678 | . . . 4 ⊢ (𝐴 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝐹) ∧ (𝐹 ↾s 𝐴) ∈ DivRing)) | |
2 | 1 | simp3bi 1144 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝐹) → (𝐹 ↾s 𝐴) ∈ DivRing) |
3 | 2 | adantl 480 | . 2 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ DivRing) |
4 | isfld 20637 | . . . 4 ⊢ (𝐹 ∈ Field ↔ (𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing)) | |
5 | 4 | simprbi 495 | . . 3 ⊢ (𝐹 ∈ Field → 𝐹 ∈ CRing) |
6 | 1 | simp2bi 1143 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝐹) → 𝐴 ∈ (SubRing‘𝐹)) |
7 | eqid 2725 | . . . 4 ⊢ (𝐹 ↾s 𝐴) = (𝐹 ↾s 𝐴) | |
8 | 7 | subrgcrng 20516 | . . 3 ⊢ ((𝐹 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ CRing) |
9 | 5, 6, 8 | syl2an 594 | . 2 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ CRing) |
10 | isfld 20637 | . 2 ⊢ ((𝐹 ↾s 𝐴) ∈ Field ↔ ((𝐹 ↾s 𝐴) ∈ DivRing ∧ (𝐹 ↾s 𝐴) ∈ CRing)) | |
11 | 3, 9, 10 | sylanbrc 581 | 1 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ‘cfv 6542 (class class class)co 7415 ↾s cress 17206 CRingccrg 20176 SubRingcsubrg 20508 DivRingcdr 20626 Fieldcfield 20627 SubDRingcsdrg 20676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-0g 17420 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-cmn 19739 df-mgp 20077 df-ring 20177 df-cring 20178 df-subrg 20510 df-field 20629 df-sdrg 20677 |
This theorem is referenced by: fldgenfld 33053 irngnzply1lem 33424 minplyirredlem 33436 minplyirred 33437 irredminply 33440 algextdeglem4 33444 algextdeglem7 33447 algextdeglem8 33448 |
Copyright terms: Public domain | W3C validator |