| Step | Hyp | Ref
| Expression |
| 1 | | anass 468 |
. 2
⊢ ((((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran
Fil) ∧ (𝐹 ⊆
𝒫 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))) |
| 2 | | df-3an 1088 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran
Fil) ∧ 𝐹 ⊆
𝒫 𝑋)) |
| 3 | 2 | anbi1i 624 |
. 2
⊢ (((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran
Fil) ∧ 𝐹 ⊆
𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 4 | | df-flim 23882 |
. . . 4
⊢ fLim =
(𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) |
| 5 | 4 | elmpocl 7653 |
. . 3
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran
Fil)) |
| 6 | | flimval.1 |
. . . . . 6
⊢ 𝑋 = ∪
𝐽 |
| 7 | 6 | flimval 23906 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
| 8 | 7 | eleq2d 2821 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)})) |
| 9 | | sneq 4616 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) |
| 10 | 9 | fveq2d 6885 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝐴})) |
| 11 | 10 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ↔ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) |
| 12 | 11 | anbi1d 631 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋) ↔ (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋))) |
| 13 | 12 | biancomd 463 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 14 | 13 | elrab 3676 |
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐴 ∈ 𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 15 | | an12 645 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 16 | 14, 15 | bitri 275 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 17 | 8, 16 | bitrdi 287 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))) |
| 18 | 5, 17 | biadanii 821 |
. 2
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran
Fil) ∧ (𝐹 ⊆
𝒫 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))) |
| 19 | 1, 3, 18 | 3bitr4ri 304 |
1
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil
∧ 𝐹 ⊆ 𝒫
𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |