MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elflim2 Structured version   Visualization version   GIF version

Theorem elflim2 23858
Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1 𝑋 = 𝐽
Assertion
Ref Expression
elflim2 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))

Proof of Theorem elflim2
Dummy variables 𝑥 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 468 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
2 df-3an 1088 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋))
32anbi1i 624 . 2 (((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
4 df-flim 23833 . . . 4 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
54elmpocl 7633 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
6 flimval.1 . . . . . 6 𝑋 = 𝐽
76flimval 23857 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
87eleq2d 2815 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ 𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)}))
9 sneq 4602 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109fveq2d 6865 . . . . . . . . 9 (𝑥 = 𝐴 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝐴}))
1110sseq1d 3981 . . . . . . . 8 (𝑥 = 𝐴 → (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ↔ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
1211anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)))
1312biancomd 463 . . . . . 6 (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1413elrab 3662 . . . . 5 (𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐴𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
15 an12 645 . . . . 5 ((𝐴𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1614, 15bitri 275 . . . 4 (𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
178, 16bitrdi 287 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
185, 17biadanii 821 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
191, 3, 183bitr4ri 304 1 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  wss 3917  𝒫 cpw 4566  {csn 4592   cuni 4874  ran crn 5642  cfv 6514  (class class class)co 7390  Topctop 22787  neicnei 22991  Filcfil 23739   fLim cflim 23828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-top 22788  df-flim 23833
This theorem is referenced by:  flimtop  23859  flimneiss  23860  flimelbas  23862  flimfil  23863  elflim  23865
  Copyright terms: Public domain W3C validator