MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elflim2 Structured version   Visualization version   GIF version

Theorem elflim2 23874
Description: The predicate "is a limit point of a filter." (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1 𝑋 = 𝐽
Assertion
Ref Expression
elflim2 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))

Proof of Theorem elflim2
Dummy variables 𝑥 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 468 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
2 df-3an 1088 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋))
32anbi1i 624 . 2 (((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
4 df-flim 23849 . . . 4 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
54elmpocl 7582 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
6 flimval.1 . . . . . 6 𝑋 = 𝐽
76flimval 23873 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
87eleq2d 2817 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ 𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)}))
9 sneq 4581 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
109fveq2d 6821 . . . . . . . . 9 (𝑥 = 𝐴 → ((nei‘𝐽)‘{𝑥}) = ((nei‘𝐽)‘{𝐴}))
1110sseq1d 3961 . . . . . . . 8 (𝑥 = 𝐴 → (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ↔ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
1211anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)))
1312biancomd 463 . . . . . 6 (𝑥 = 𝐴 → ((((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1413elrab 3642 . . . . 5 (𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐴𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
15 an12 645 . . . . 5 ((𝐴𝑋 ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
1614, 15bitri 275 . . . 4 (𝐴 ∈ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
178, 16bitrdi 287 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
185, 17biadanii 821 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))))
191, 3, 183bitr4ri 304 1 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  wss 3897  𝒫 cpw 4545  {csn 4571   cuni 4854  ran crn 5612  cfv 6476  (class class class)co 7341  Topctop 22803  neicnei 23007  Filcfil 23755   fLim cflim 23844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-top 22804  df-flim 23849
This theorem is referenced by:  flimtop  23875  flimneiss  23876  flimelbas  23878  flimfil  23879  elflim  23881
  Copyright terms: Public domain W3C validator