Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimval | Structured version Visualization version GIF version |
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimval | ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 22055 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → 𝑋 ∈ 𝐽) |
4 | rabexg 5255 | . . 3 ⊢ (𝑋 ∈ 𝐽 → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) |
6 | simpl 483 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑗 = 𝐽) | |
7 | 6 | unieqd 4853 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = ∪ 𝐽) |
8 | 7, 1 | eqtr4di 2796 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = 𝑋) |
9 | 6 | fveq2d 6778 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽)) |
10 | 9 | fveq1d 6776 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
11 | simpr 485 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
12 | 10, 11 | sseq12d 3954 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)) |
13 | 8 | pweqd 4552 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
14 | 11, 13 | sseq12d 3954 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 ∪ 𝑗 ↔ 𝐹 ⊆ 𝒫 𝑋)) |
15 | 12, 14 | anbi12d 631 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋))) |
16 | 8, 15 | rabeqbidv 3420 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)} = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
17 | df-flim 23090 | . . 3 ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) | |
18 | 16, 17 | ovmpoga 7427 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
19 | 5, 18 | mpd3an3 1461 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Topctop 22042 neicnei 22248 Filcfil 22996 fLim cflim 23085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-top 22043 df-flim 23090 |
This theorem is referenced by: elflim2 23115 |
Copyright terms: Public domain | W3C validator |