MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimval Structured version   Visualization version   GIF version

Theorem flimval 23788
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
flimval ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil) β†’ (𝐽 fLim 𝐹) = {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)})
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝑋

Proof of Theorem flimval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimval.1 . . . . 5 𝑋 = βˆͺ 𝐽
21topopn 22729 . . . 4 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
32adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil) β†’ 𝑋 ∈ 𝐽)
4 rabexg 5331 . . 3 (𝑋 ∈ 𝐽 β†’ {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)} ∈ V)
53, 4syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil) β†’ {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)} ∈ V)
6 simpl 482 . . . . . 6 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ 𝑗 = 𝐽)
76unieqd 4922 . . . . 5 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
87, 1eqtr4di 2789 . . . 4 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ βˆͺ 𝑗 = 𝑋)
96fveq2d 6895 . . . . . . 7 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ (neiβ€˜π‘—) = (neiβ€˜π½))
109fveq1d 6893 . . . . . 6 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ ((neiβ€˜π‘—)β€˜{π‘₯}) = ((neiβ€˜π½)β€˜{π‘₯}))
11 simpr 484 . . . . . 6 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ 𝑓 = 𝐹)
1210, 11sseq12d 4015 . . . . 5 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ (((neiβ€˜π‘—)β€˜{π‘₯}) βŠ† 𝑓 ↔ ((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹))
138pweqd 4619 . . . . . 6 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ 𝒫 βˆͺ 𝑗 = 𝒫 𝑋)
1411, 13sseq12d 4015 . . . . 5 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ (𝑓 βŠ† 𝒫 βˆͺ 𝑗 ↔ 𝐹 βŠ† 𝒫 𝑋))
1512, 14anbi12d 630 . . . 4 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ ((((neiβ€˜π‘—)β€˜{π‘₯}) βŠ† 𝑓 ∧ 𝑓 βŠ† 𝒫 βˆͺ 𝑗) ↔ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)))
168, 15rabeqbidv 3448 . . 3 ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) β†’ {π‘₯ ∈ βˆͺ 𝑗 ∣ (((neiβ€˜π‘—)β€˜{π‘₯}) βŠ† 𝑓 ∧ 𝑓 βŠ† 𝒫 βˆͺ 𝑗)} = {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)})
17 df-flim 23764 . . 3 fLim = (𝑗 ∈ Top, 𝑓 ∈ βˆͺ ran Fil ↦ {π‘₯ ∈ βˆͺ 𝑗 ∣ (((neiβ€˜π‘—)β€˜{π‘₯}) βŠ† 𝑓 ∧ 𝑓 βŠ† 𝒫 βˆͺ 𝑗)})
1816, 17ovmpoga 7565 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil ∧ {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)} ∈ V) β†’ (𝐽 fLim 𝐹) = {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)})
195, 18mpd3an3 1461 1 ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil) β†’ (𝐽 fLim 𝐹) = {π‘₯ ∈ 𝑋 ∣ (((neiβ€˜π½)β€˜{π‘₯}) βŠ† 𝐹 ∧ 𝐹 βŠ† 𝒫 𝑋)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βŠ† wss 3948  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  Topctop 22716  neicnei 22922  Filcfil 23670   fLim cflim 23759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-top 22717  df-flim 23764
This theorem is referenced by:  elflim2  23789
  Copyright terms: Public domain W3C validator