MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimval Structured version   Visualization version   GIF version

Theorem flimval 23022
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1 𝑋 = 𝐽
Assertion
Ref Expression
flimval ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝑋

Proof of Theorem flimval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimval.1 . . . . 5 𝑋 = 𝐽
21topopn 21963 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
32adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → 𝑋𝐽)
4 rabexg 5250 . . 3 (𝑋𝐽 → {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ∈ V)
53, 4syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ∈ V)
6 simpl 482 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
76unieqd 4850 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
87, 1eqtr4di 2797 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝑋)
96fveq2d 6760 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽))
109fveq1d 6758 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
11 simpr 484 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
1210, 11sseq12d 3950 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))
138pweqd 4549 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝒫 𝑗 = 𝒫 𝑋)
1411, 13sseq12d 3950 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 𝑗𝐹 ⊆ 𝒫 𝑋))
1512, 14anbi12d 630 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)))
168, 15rabeqbidv 3410 . . 3 ((𝑗 = 𝐽𝑓 = 𝐹) → {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)} = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
17 df-flim 22998 . . 3 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
1816, 17ovmpoga 7405 . 2 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
195, 18mpd3an3 1460 1 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836  ran crn 5581  cfv 6418  (class class class)co 7255  Topctop 21950  neicnei 22156  Filcfil 22904   fLim cflim 22993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-top 21951  df-flim 22998
This theorem is referenced by:  elflim2  23023
  Copyright terms: Public domain W3C validator