| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimval | Structured version Visualization version GIF version | ||
| Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| flimval | ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn 22809 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → 𝑋 ∈ 𝐽) |
| 4 | rabexg 5279 | . . 3 ⊢ (𝑋 ∈ 𝐽 → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) |
| 6 | simpl 482 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑗 = 𝐽) | |
| 7 | 6 | unieqd 4874 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = ∪ 𝐽) |
| 8 | 7, 1 | eqtr4di 2782 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = 𝑋) |
| 9 | 6 | fveq2d 6830 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽)) |
| 10 | 9 | fveq1d 6828 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
| 12 | 10, 11 | sseq12d 3971 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)) |
| 13 | 8 | pweqd 4570 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
| 14 | 11, 13 | sseq12d 3971 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 ∪ 𝑗 ↔ 𝐹 ⊆ 𝒫 𝑋)) |
| 15 | 12, 14 | anbi12d 632 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋))) |
| 16 | 8, 15 | rabeqbidv 3415 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)} = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
| 17 | df-flim 23842 | . . 3 ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) | |
| 18 | 16, 17 | ovmpoga 7507 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
| 19 | 5, 18 | mpd3an3 1464 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 ran crn 5624 ‘cfv 6486 (class class class)co 7353 Topctop 22796 neicnei 23000 Filcfil 23748 fLim cflim 23837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-top 22797 df-flim 23842 |
| This theorem is referenced by: elflim2 23867 |
| Copyright terms: Public domain | W3C validator |