MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimval Structured version   Visualization version   GIF version

Theorem flimval 22860
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimval.1 𝑋 = 𝐽
Assertion
Ref Expression
flimval ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝑋

Proof of Theorem flimval
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimval.1 . . . . 5 𝑋 = 𝐽
21topopn 21803 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
32adantr 484 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → 𝑋𝐽)
4 rabexg 5224 . . 3 (𝑋𝐽 → {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ∈ V)
53, 4syl 17 . 2 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ∈ V)
6 simpl 486 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
76unieqd 4833 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝐽)
87, 1eqtr4di 2796 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑗 = 𝑋)
96fveq2d 6721 . . . . . . 7 ((𝑗 = 𝐽𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽))
109fveq1d 6719 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥}))
11 simpr 488 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝑓 = 𝐹)
1210, 11sseq12d 3934 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹))
138pweqd 4532 . . . . . 6 ((𝑗 = 𝐽𝑓 = 𝐹) → 𝒫 𝑗 = 𝒫 𝑋)
1411, 13sseq12d 3934 . . . . 5 ((𝑗 = 𝐽𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 𝑗𝐹 ⊆ 𝒫 𝑋))
1512, 14anbi12d 634 . . . 4 ((𝑗 = 𝐽𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)))
168, 15rabeqbidv 3396 . . 3 ((𝑗 = 𝐽𝑓 = 𝐹) → {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)} = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
17 df-flim 22836 . . 3 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
1816, 17ovmpoga 7363 . 2 ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
195, 18mpd3an3 1464 1 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fLim 𝐹) = {𝑥𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹𝐹 ⊆ 𝒫 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  wss 3866  𝒫 cpw 4513  {csn 4541   cuni 4819  ran crn 5552  cfv 6380  (class class class)co 7213  Topctop 21790  neicnei 21994  Filcfil 22742   fLim cflim 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-top 21791  df-flim 22836
This theorem is referenced by:  elflim2  22861
  Copyright terms: Public domain W3C validator