Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimval | Structured version Visualization version GIF version |
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimval | ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 21963 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → 𝑋 ∈ 𝐽) |
4 | rabexg 5250 | . . 3 ⊢ (𝑋 ∈ 𝐽 → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) |
6 | simpl 482 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑗 = 𝐽) | |
7 | 6 | unieqd 4850 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = ∪ 𝐽) |
8 | 7, 1 | eqtr4di 2797 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = 𝑋) |
9 | 6 | fveq2d 6760 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽)) |
10 | 9 | fveq1d 6758 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
11 | simpr 484 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
12 | 10, 11 | sseq12d 3950 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)) |
13 | 8 | pweqd 4549 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
14 | 11, 13 | sseq12d 3950 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 ∪ 𝑗 ↔ 𝐹 ⊆ 𝒫 𝑋)) |
15 | 12, 14 | anbi12d 630 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋))) |
16 | 8, 15 | rabeqbidv 3410 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)} = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
17 | df-flim 22998 | . . 3 ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) | |
18 | 16, 17 | ovmpoga 7405 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
19 | 5, 18 | mpd3an3 1460 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Topctop 21950 neicnei 22156 Filcfil 22904 fLim cflim 22993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-top 21951 df-flim 22998 |
This theorem is referenced by: elflim2 23023 |
Copyright terms: Public domain | W3C validator |