Detailed syntax breakdown of Definition df-fsupp
| Step | Hyp | Ref
| Expression |
| 1 | | cfsupp 9401 |
. 2
class
finSupp |
| 2 | | vr |
. . . . . 6
setvar 𝑟 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑟 |
| 4 | 3 | wfun 6555 |
. . . 4
wff Fun 𝑟 |
| 5 | | vz |
. . . . . . 7
setvar 𝑧 |
| 6 | 5 | cv 1539 |
. . . . . 6
class 𝑧 |
| 7 | | csupp 8185 |
. . . . . 6
class
supp |
| 8 | 3, 6, 7 | co 7431 |
. . . . 5
class (𝑟 supp 𝑧) |
| 9 | | cfn 8985 |
. . . . 5
class
Fin |
| 10 | 8, 9 | wcel 2108 |
. . . 4
wff (𝑟 supp 𝑧) ∈ Fin |
| 11 | 4, 10 | wa 395 |
. . 3
wff (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) |
| 12 | 11, 2, 5 | copab 5205 |
. 2
class
{〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} |
| 13 | 1, 12 | wceq 1540 |
1
wff finSupp =
{〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} |