MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfsupp Structured version   Visualization version   GIF version

Theorem relfsupp 9108
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relfsupp Rel finSupp

Proof of Theorem relfsupp
Dummy variables 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fsupp 9107 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
21relopabiv 5729 1 Rel finSupp
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2110  Rel wrel 5595  Fun wfun 6426  (class class class)co 7271   supp csupp 7968  Fincfn 8716   finSupp cfsupp 9106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-ss 3909  df-opab 5142  df-xp 5596  df-rel 5597  df-fsupp 9107
This theorem is referenced by:  relprcnfsupp  9109  fsuppimp  9112  suppeqfsuppbi  9120  fsuppsssupp  9122  fsuppunbi  9127  funsnfsupp  9130  wemapso2  9290  gsumhashmul  31312
  Copyright terms: Public domain W3C validator