![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relfsupp | ⊢ Rel finSupp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fsupp 9388 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
2 | 1 | relopabiv 5822 | 1 ⊢ Rel finSupp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ∈ wcel 2098 Rel wrel 5683 Fun wfun 6543 (class class class)co 7419 supp csupp 8165 Fincfn 8964 finSupp cfsupp 9387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-ss 3961 df-opab 5212 df-xp 5684 df-rel 5685 df-fsupp 9388 |
This theorem is referenced by: relprcnfsupp 9390 fsuppimp 9394 suppeqfsuppbi 9404 fsuppsssupp 9406 fsuppss 9408 fsuppssov1 9409 fsuppunbi 9414 funsnfsupp 9417 wemapso2 9578 gsumhashmul 32860 |
Copyright terms: Public domain | W3C validator |