Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relfsupp | ⊢ Rel finSupp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fsupp 9059 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel finSupp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Rel wrel 5585 Fun wfun 6412 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-fsupp 9059 |
This theorem is referenced by: relprcnfsupp 9061 fsuppimp 9064 suppeqfsuppbi 9072 fsuppsssupp 9074 fsuppunbi 9079 funsnfsupp 9082 wemapso2 9242 gsumhashmul 31218 |
Copyright terms: Public domain | W3C validator |