Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relfsupp | ⊢ Rel finSupp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fsupp 9107 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
2 | 1 | relopabiv 5729 | 1 ⊢ Rel finSupp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2110 Rel wrel 5595 Fun wfun 6426 (class class class)co 7271 supp csupp 7968 Fincfn 8716 finSupp cfsupp 9106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-opab 5142 df-xp 5596 df-rel 5597 df-fsupp 9107 |
This theorem is referenced by: relprcnfsupp 9109 fsuppimp 9112 suppeqfsuppbi 9120 fsuppsssupp 9122 fsuppunbi 9127 funsnfsupp 9130 wemapso2 9290 gsumhashmul 31312 |
Copyright terms: Public domain | W3C validator |