MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfsupp Structured version   Visualization version   GIF version

Theorem relfsupp 9380
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relfsupp Rel finSupp

Proof of Theorem relfsupp
Dummy variables 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fsupp 9379 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
21relopabiv 5804 1 Rel finSupp
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  Rel wrel 5664  Fun wfun 6530  (class class class)co 7410   supp csupp 8164  Fincfn 8964   finSupp cfsupp 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-opab 5187  df-xp 5665  df-rel 5666  df-fsupp 9379
This theorem is referenced by:  relprcnfsupp  9381  fsuppimp  9385  suppeqfsuppbi  9396  fsuppsssupp  9398  fsuppss  9400  fsuppssov1  9401  fsuppunbi  9406  funsnfsupp  9409  wemapso2  9572  gsumhashmul  33060
  Copyright terms: Public domain W3C validator