![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relfsupp | ⊢ Rel finSupp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fsupp 9432 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel finSupp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Rel wrel 5705 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-fsupp 9432 |
This theorem is referenced by: relprcnfsupp 9434 fsuppimp 9438 suppeqfsuppbi 9448 fsuppsssupp 9450 fsuppss 9452 fsuppssov1 9453 fsuppunbi 9458 funsnfsupp 9461 wemapso2 9622 gsumhashmul 33040 |
Copyright terms: Public domain | W3C validator |