| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version | ||
| Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| relfsupp | ⊢ Rel finSupp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fsupp 9289 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel finSupp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Rel wrel 5636 Fun wfun 6493 (class class class)co 7369 supp csupp 8116 Fincfn 8895 finSupp cfsupp 9288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-fsupp 9289 |
| This theorem is referenced by: relprcnfsupp 9291 fsuppimp 9295 suppeqfsuppbi 9306 fsuppsssupp 9308 fsuppss 9310 fsuppssov1 9311 fsuppunbi 9316 funsnfsupp 9319 wemapso2 9482 gsumhashmul 32974 |
| Copyright terms: Public domain | W3C validator |