MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfsupp Structured version   Visualization version   GIF version

Theorem relfsupp 9242
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relfsupp Rel finSupp

Proof of Theorem relfsupp
Dummy variables 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fsupp 9241 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
21relopabiv 5755 1 Rel finSupp
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  Rel wrel 5616  Fun wfun 6470  (class class class)co 7341   supp csupp 8085  Fincfn 8864   finSupp cfsupp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5149  df-xp 5617  df-rel 5618  df-fsupp 9241
This theorem is referenced by:  relprcnfsupp  9243  fsuppimp  9247  suppeqfsuppbi  9258  fsuppsssupp  9260  fsuppss  9262  fsuppssov1  9263  fsuppunbi  9268  funsnfsupp  9271  wemapso2  9434  gsumhashmul  33033
  Copyright terms: Public domain W3C validator