| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version | ||
| Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| relfsupp | ⊢ Rel finSupp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fsupp 9241 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
| 2 | 1 | relopabiv 5755 | 1 ⊢ Rel finSupp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 Rel wrel 5616 Fun wfun 6470 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5149 df-xp 5617 df-rel 5618 df-fsupp 9241 |
| This theorem is referenced by: relprcnfsupp 9243 fsuppimp 9247 suppeqfsuppbi 9258 fsuppsssupp 9260 fsuppss 9262 fsuppssov1 9263 fsuppunbi 9268 funsnfsupp 9271 wemapso2 9434 gsumhashmul 33033 |
| Copyright terms: Public domain | W3C validator |