MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfsupp Structured version   Visualization version   GIF version

Theorem relfsupp 9272
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.)
Assertion
Ref Expression
relfsupp Rel finSupp

Proof of Theorem relfsupp
Dummy variables 𝑧 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fsupp 9271 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
21relopabiv 5767 1 Rel finSupp
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  Rel wrel 5628  Fun wfun 6480  (class class class)co 7353   supp csupp 8100  Fincfn 8879   finSupp cfsupp 9270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-ss 3922  df-opab 5158  df-xp 5629  df-rel 5630  df-fsupp 9271
This theorem is referenced by:  relprcnfsupp  9273  fsuppimp  9277  suppeqfsuppbi  9288  fsuppsssupp  9290  fsuppss  9292  fsuppssov1  9293  fsuppunbi  9298  funsnfsupp  9301  wemapso2  9464  gsumhashmul  33033
  Copyright terms: Public domain W3C validator