Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relfsupp | Structured version Visualization version GIF version |
Description: The property of a function to be finitely supported is a relation. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
relfsupp | ⊢ Rel finSupp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fsupp 9129 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel finSupp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 Rel wrel 5594 Fun wfun 6427 (class class class)co 7275 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-fsupp 9129 |
This theorem is referenced by: relprcnfsupp 9131 fsuppimp 9134 suppeqfsuppbi 9142 fsuppsssupp 9144 fsuppunbi 9149 funsnfsupp 9152 wemapso2 9312 gsumhashmul 31316 |
Copyright terms: Public domain | W3C validator |