![]() |
Metamath
Proof Explorer Theorem List (p. 94 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 0sdom1dom 9301 | Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7770, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 7-Dec-2024.) |
⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
Theorem | 0sdom1domALT 9302 | Alternate proof of 0sdom1dom 9301, shorter but requiring ax-un 7770. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
Theorem | 1sdom2 9303 | Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7770, see 1sdom2ALT 9304. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7770. (Revised by BTernaryTau, 8-Dec-2024.) |
⊢ 1o ≺ 2o | ||
Theorem | 1sdom2ALT 9304 | Alternate proof of 1sdom2 9303, shorter but requiring ax-un 7770. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1o ≺ 2o | ||
Theorem | sdom1 9305 | A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 12-Dec-2024.) |
⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
Theorem | sdom1OLD 9306 | Obsolete version of sdom1 9305 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
Theorem | modom 9307 | Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) | ||
Theorem | modom2 9308* | Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) | ||
Theorem | rex2dom 9309* | A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | ||
Theorem | 1sdom2dom 9310 | Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024.) |
⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | ||
Theorem | 1sdom 9311* | A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9095.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7770. (Revised by BTernaryTau, 30-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
Theorem | 1sdomOLD 9312* | Obsolete version of 1sdom 9311 as of 30-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
Theorem | unxpdomlem1 9313* | Lemma for unxpdom 9316. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) | ||
Theorem | unxpdomlem2 9314* | Lemma for unxpdom 9316. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) & ⊢ (𝜑 → 𝑤 ∈ (𝑎 ∪ 𝑏)) & ⊢ (𝜑 → ¬ 𝑚 = 𝑛) & ⊢ (𝜑 → ¬ 𝑠 = 𝑡) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) | ||
Theorem | unxpdomlem3 9315* | Lemma for unxpdom 9316. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ ((1o ≺ 𝑎 ∧ 1o ≺ 𝑏) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) | ||
Theorem | unxpdom 9316 | Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) | ||
Theorem | unxpdom2 9317 | Corollary of unxpdom 9316. (Contributed by NM, 16-Sep-2004.) |
⊢ ((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) | ||
Theorem | sucxpdom 9318 | Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
⊢ (1o ≺ 𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴)) | ||
Theorem | pssinf 9319 | A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | ||
Theorem | fisseneq 9320 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ominf 9321 | The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 2-Jan-2025.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | ominfOLD 9322 | Obsolete version of ominf 9321 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | isinf 9323* | Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5383. (Revised by BTernaryTau, 2-Jan-2025.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | isinfOLD 9324* | Obsolete version of isinf 9323 as of 2-Jan-2025. (Contributed by Mario Carneiro, 15-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | fineqvlem 9325 | Lemma for fineqv 9326. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | ||
Theorem | fineqv 9326 | If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
⊢ (¬ ω ∈ V ↔ Fin = V) | ||
Theorem | enfiiOLD 9327 | Obsolete version of enfii 9252 as of 23-Sep-2024. (Contributed by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
Theorem | xpfir 9328 | The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
Theorem | ssfid 9329 | A subset of a finite set is finite, deduction version of ssfi 9240. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
Theorem | infi 9330 | The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | ||
Theorem | rabfi 9331* | A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) | ||
Theorem | finresfin 9332 | The restriction of a finite set is finite. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐵) ∈ Fin) | ||
Theorem | f1finf1o 9333 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5383. (Revised by BTernaryTau, 4-Jan-2025.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
Theorem | f1finf1oOLD 9334 | Obsolete version of f1finf1o 9333 as of 4-Jan-2025. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
Theorem | nfielex 9335* | If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | en1eqsn 9336 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 4-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
Theorem | en1eqsnOLD 9337 | Obsolete version of en1eqsn 9336 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
Theorem | en1eqsnbi 9338 | A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20800. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
Theorem | dif1ennnALT 9339 | Alternate proof of dif1ennn 9227 using ax-pow 5383. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
Theorem | enp1ilem 9340 | Lemma for uses of enp1i 9341. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 𝑇 = ({𝑥} ∪ 𝑆) ⇒ ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) | ||
Theorem | enp1i 9341* | Proof induction for en2 9343 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 6-Jan-2025.) |
⊢ Ord 𝑀 & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
Theorem | enp1iOLD 9342* | Obsolete version of enp1i 9341 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 ∈ ω & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
Theorem | en2 9343* | A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | ||
Theorem | en3 9344* | A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) | ||
Theorem | en4 9345* | A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) | ||
Theorem | findcard3 9346* | Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Jan-2025.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard3OLD 9347* | Obsolete version of findcard3 9346 as of 7-Jan-2025. (Contributed by Mario Carneiro, 13-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | ac6sfi 9348* | A version of ac6s 10553 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | frfi 9349 | A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | ||
Theorem | fimax2g 9350* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
Theorem | fimaxg 9351* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) | ||
Theorem | fisupg 9352* | Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))) | ||
Theorem | wofi 9353 | A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) | ||
Theorem | ordunifi 9354 | The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
Theorem | nnunifi 9355 | The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) | ||
Theorem | unblem1 9356* | Lemma for unbnn 9360. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
⊢ (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∩ (𝐵 ∖ suc 𝐴) ∈ 𝐵) | ||
Theorem | unblem2 9357* | Lemma for unbnn 9360. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) | ||
Theorem | unblem3 9358* | Lemma for unbnn 9360. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) | ||
Theorem | unblem4 9359* | Lemma for unbnn 9360. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) | ||
Theorem | unbnn 9360* | Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9728 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) | ||
Theorem | unbnn2 9361* | Version of unbnn 9360 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) | ||
Theorem | isfinite2 9362 | Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.) |
⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | ||
Theorem | nnsdomg 9363 | Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9723 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Jan-2025.) |
⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
Theorem | nnsdomgOLD 9364 | Obsolete version of nnsdomg 9363 as of 7-Jan-2025. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
Theorem | isfiniteg 9365 | A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | ||
Theorem | infsdomnn 9366 | An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Jan-2025.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
Theorem | infsdomnnOLD 9367 | Obsolete version of infsdomnn 9366 as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
Theorem | infn0 9368 | An infinite set is not empty. For a shorter proof using ax-un 7770, see infn0ALT 9369. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7770. (Revised by BTernaryTau, 8-Jan-2025.) |
⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | infn0ALT 9369 | Shorter proof of infn0 9368 using ax-un 7770. (Contributed by NM, 23-Oct-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | fin2inf 9370 | This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
⊢ (𝐴 ≺ ω → ω ∈ V) | ||
Theorem | unfilem1 9371* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) | ||
Theorem | unfilem2 9372* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) | ||
Theorem | unfilem3 9373 | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) | ||
Theorem | unfir 9374 | If a union is finite, the operands are finite. Converse of unfi 9238. (Contributed by FL, 3-Aug-2009.) |
⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
Theorem | unfib 9375 | A union is finite if and only if the operands are finite. (Contributed by AV, 10-May-2025.) |
⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
Theorem | unfi2 9376 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 9238 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9370). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | ||
Theorem | difinf 9377 | An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) | ||
Theorem | fodomfi 9378 | An onto function implies dominance of domain over range, for finite sets. Unlike fodomg 10591 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5383. (Revised by BTernaryTau, 20-Jun-2025.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
Theorem | fofi 9379 | If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | ||
Theorem | f1fi 9380 | If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | ||
Theorem | imafi 9381 | Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
Theorem | imafiOLD 9382 | Obsolete version of imafi 9381 as of 25-Jun-2025. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
Theorem | pwfir 9383 | If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.) |
⊢ (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin) | ||
Theorem | pwfilem 9384* | Lemma for pwfi 9385. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Sep-2024.) |
⊢ 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥})) ⇒ ⊢ (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin) | ||
Theorem | pwfi 9385 | The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Sep-2024.) |
⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | ||
Theorem | xpfi 9386 | The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 10-Jan-2025.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
Theorem | xpfiOLD 9387 | Obsolete version of xpfi 9386 as of 10-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
Theorem | 3xpfi 9388 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
Theorem | domunfican 9389 | A finite set union cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
⊢ (((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) | ||
Theorem | infcntss 9390* | Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) | ||
Theorem | prfi 9391 | An unordered pair is finite. For a shorter proof using ax-un 7770, see prfiALT 9392. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7770. (Revised by BTernaryTau, 13-Jan-2025.) |
⊢ {𝐴, 𝐵} ∈ Fin | ||
Theorem | prfiALT 9392 | Shorter proof of prfi 9391 using ax-un 7770. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝐴, 𝐵} ∈ Fin | ||
Theorem | tpfi 9393 | An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013.) |
⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | ||
Theorem | fiint 9394* | Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of 𝐴 is in 𝐴". This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.) Use a separate setvar for the right-hand side and avoid ax-pow 5383. (Revised by BTernaryTau, 14-Jan-2025.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin) → ∩ 𝑧 ∈ 𝐴)) | ||
Theorem | fiintOLD 9395* | Obsolete version of fiint 9394 as of 14-Jan-2025. (Contributed by NM, 22-Sep-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
Theorem | fodomfir 9396* | There exists a mapping from a finite set onto any nonempty set that it dominates, proved without using the Axiom of Power Sets (unlike fodomr 9194). (Contributed by BTernaryTau, 23-Jun-2025.) |
⊢ ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐵) | ||
Theorem | fodomfib 9397* | Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 10595 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Jun-2025.) |
⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
Theorem | fodomfiOLD 9398 | Obsolete version of fodomfi 9378 as of 20-Jun-2025. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
Theorem | fodomfibOLD 9399* | Obsolete version of fodomfib 9397 as of 23-Jun-2025. (Contributed by NM, 23-Mar-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
Theorem | fofinf1o 9400 | Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.) |
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |