Home | Metamath
Proof Explorer Theorem List (p. 94 of 468) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29416) |
Hilbert Space Explorer
(29417-30939) |
Users' Mathboxes
(30940-46786) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sup0riota 9301* | The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) | ||
Theorem | sup0 9302* | The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋) | ||
Theorem | supmax 9303* | The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
Theorem | fisup2g 9304* | A finite set satisfies the conditions to have a supremum. (Contributed by Mario Carneiro, 28-Apr-2015.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
Theorem | fisupcl 9305 | A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
Theorem | supgtoreq 9306 | The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) | ||
Theorem | suppr 9307 | The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶)) | ||
Theorem | supsn 9308 | The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
Theorem | supisolem 9309* | Lemma for supiso 9311. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) | ||
Theorem | supisoex 9310* | Lemma for supiso 9311. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) | ||
Theorem | supiso 9311* | Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅))) | ||
Theorem | infeq1 9312 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
Theorem | infeq1d 9313 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
Theorem | infeq1i 9314 | Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ 𝐵 = 𝐶 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) | ||
Theorem | infeq2 9315 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) | ||
Theorem | infeq3 9316 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) | ||
Theorem | infeq123d 9317 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) | ||
Theorem | nfinf 9318 | Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | ||
Theorem | infexd 9319 | An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) | ||
Theorem | eqinf 9320* | Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
Theorem | eqinfd 9321* | Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
Theorem | infval 9322* | Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) | ||
Theorem | infcllem 9323* | Lemma for infcl 9324, inflb 9325, infglb 9326, etc. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
Theorem | infcl 9324* | An infimum belongs to its base class (closure law). See also inflb 9325 and infglb 9326. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
Theorem | inflb 9325* | An infimum is a lower bound. See also infcl 9324 and infglb 9326. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) | ||
Theorem | infglb 9326* | An infimum is the greatest lower bound. See also infcl 9324 and inflb 9325. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
Theorem | infglbb 9327* | Bidirectional form of infglb 9326. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
Theorem | infnlb 9328* | A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
Theorem | infex 9329 | An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
⊢ 𝑅 Or 𝐴 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V | ||
Theorem | infmin 9330* | The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
Theorem | infmo 9331* | Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | infeu 9332* | An infimum is unique. (Contributed by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | fimin2g 9333* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | ||
Theorem | fiming 9334* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) | ||
Theorem | fiinfg 9335* | Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦))) | ||
Theorem | fiinf2g 9336* | A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | fiinfcl 9337 | A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
Theorem | infltoreq 9338 | The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) | ||
Theorem | infpr 9339 | The infimum of a pair. (Contributed by AV, 4-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶)) | ||
Theorem | infsupprpr 9340 | The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅)) | ||
Theorem | infsn 9341 | The infimum of a singleton. (Contributed by NM, 2-Oct-2007.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
Theorem | inf00 9342 | The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
⊢ inf(𝐵, ∅, 𝑅) = ∅ | ||
Theorem | infempty 9343* | The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) | ||
Theorem | infiso 9344* | Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.) |
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) | ||
Syntax | coi 9345 | Extend class definition to include the canonical order isomorphism to an ordinal. |
class OrdIso(𝑅, 𝐴) | ||
Definition | df-oi 9346* | Define the canonical order isomorphism from the well-order 𝑅 on 𝐴 to an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
Theorem | dfoi 9347* | Rewrite df-oi 9346 with abbreviations. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
Theorem | oieq1 9348 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴)) | ||
Theorem | oieq2 9349 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ (𝐴 = 𝐵 → OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐵)) | ||
Theorem | nfoi 9350 | Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥OrdIso(𝑅, 𝐴) | ||
Theorem | ordiso2 9351 | Generalize ordiso 9352 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ordiso 9352* | Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) | ||
Theorem | ordtypecbv 9353* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) ⇒ ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹 | ||
Theorem | ordtypelem1 9354* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) | ||
Theorem | ordtypelem2 9355* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → Ord 𝑇) | ||
Theorem | ordtypelem3 9356* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) | ||
Theorem | ordtypelem4 9357* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) | ||
Theorem | ordtypelem5 9358* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) | ||
Theorem | ordtypelem6 9359* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ 𝑀 → (𝑂‘𝑁)𝑅(𝑂‘𝑀))) | ||
Theorem | ordtypelem7 9360* | Lemma for ordtype 9368. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝑂)) | ||
Theorem | ordtypelem8 9361* | Lemma for ordtype 9368. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | ||
Theorem | ordtypelem9 9362* | Lemma for ordtype 9368. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9366 implies that either ran 𝑂 ⊆ 𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
Theorem | ordtypelem10 9363* | Lemma for ordtype 9368. Using ax-rep 5224, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
Theorem | oi0 9364 | Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) | ||
Theorem | oicl 9365 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ Ord dom 𝐹 | ||
Theorem | oif 9366 | The order isomorphism of the well-order 𝑅 on 𝐴 is a function. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ 𝐹:dom 𝐹⟶𝐴 | ||
Theorem | oiiso2 9367 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism onto ran 𝑂 (which is a subset of 𝐴 by oif 9366). (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, ran 𝐹)) | ||
Theorem | ordtype 9368 | For any set-like well-ordered class, there is an isomorphic ordinal number called its order type. (Contributed by Jeff Hankins, 17-Oct-2009.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiiniseg 9369 | ran 𝐹 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑁 ∈ 𝐴 ∧ 𝑀 ∈ dom 𝐹)) → ((𝐹‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝐹)) | ||
Theorem | ordtype2 9370 | For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto 𝐴 isomorphically. Otherwise, 𝐹 is a proper class, which implies that either ran 𝐹 ⊆ 𝐴 is a proper class or dom 𝐹 = On. This weak version of ordtype 9368 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiexg 9371 | The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) | ||
Theorem | oion 9372 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) | ||
Theorem | oiiso 9373 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oien 9374 | The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) | ||
Theorem | oieu 9375 | Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ((Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹))) | ||
Theorem | oismo 9376 | When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 5224 (the second statement is trivial under ax-rep 5224). (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso( E , 𝐴) ⇒ ⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) | ||
Theorem | oiid 9377 | The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | ||
Theorem | hartogslem1 9378* | Lemma for hartogs 9380. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) | ||
Theorem | hartogslem2 9379* | Lemma for hartogs 9380. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) | ||
Theorem | hartogs 9380* | The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 9378 and hartogslem2 9379) proof can be given using the axiom of choice, see ondomon 10399. As its label indicates, this result is used to justify the definition of the Hartogs function df-har 9393. (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
Theorem | wofib 9381 | The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) ↔ (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) | ||
Theorem | wemaplem1 9382* | Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊) → (𝑃𝑇𝑄 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑄‘𝑎) ∧ ∀𝑏 ∈ 𝐴 (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑄‘𝑏))))) | ||
Theorem | wemaplem2 9383* | Lemma for wemapso 9387. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) & ⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemaplem3 9384* | Lemma for wemapso 9387. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑃𝑇𝑋) & ⊢ (𝜑 → 𝑋𝑇𝑄) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemappo 9385* |
Construct lexicographic order on a function space based on a
well-ordering of the indices and a total ordering of the values.
Without totality on the values or least differing indices, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐵 ↑m 𝐴)) | ||
Theorem | wemapsolem 9386* | Lemma for wemapso 9387. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 ⊆ (𝐵 ↑m 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Or 𝐵) & ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ 𝑎 ≠ 𝑏)) → ∃𝑐 ∈ dom (𝑎 ∖ 𝑏)∀𝑑 ∈ dom (𝑎 ∖ 𝑏) ¬ 𝑑𝑅𝑐) ⇒ ⊢ (𝜑 → 𝑇 Or 𝑈) | ||
Theorem | wemapso 9387* | Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐵 ↑m 𝐴)) | ||
Theorem | wemapso2lem 9388* | Lemma for wemapso2 9389. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ 𝑊) → 𝑇 Or 𝑈) | ||
Theorem | wemapso2 9389* | An alternative to having a well-order on 𝑅 in wemapso 9387 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) | ||
Theorem | card2on 9390* | The alternate definition of the cardinal of a set given in cardval2 9827 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On | ||
Theorem | card2inf 9391* | The alternate definition of the cardinal of a set given in cardval2 9827 has the curious property that for non-numerable sets (for which ndmfv 6844 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
Syntax | char 9392 | Class symbol for the Hartogs function. |
class har | ||
Definition | df-har 9393* |
Define the Hartogs function as mapping a set to the class of ordinals it
dominates. That class is an ordinal by hartogs 9380, which is used in
harf 9394.
The Hartogs number of a set is the least ordinal not dominated by that set. Theorem harval2 9833 proves that the Hartogs function actually gives the Hartogs number for well-orderable sets. The Hartogs number of an ordinal is its cardinal successor. This is proved for finite ordinal in harsucnn 9834. Traditionally, the Hartogs number of a set 𝑋 is written ℵ(𝑋), and its cardinal successor, 𝑋 +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 9776. Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | ||
Theorem | harf 9394 | Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har:V⟶On | ||
Theorem | harcl 9395 | Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (har‘𝑋) ∈ On | ||
Theorem | harval 9396* | Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | ||
Theorem | elharval 9397 | The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9395, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) | ||
Theorem | harndom 9398 | The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ¬ (har‘𝑋) ≼ 𝑋 | ||
Theorem | harword 9399 | Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) | ||
Syntax | cwdom 9400 | Class symbol for the weak dominance relation. |
class ≼* |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |