| Metamath
Proof Explorer Theorem List (p. 94 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | funsnfsupp 9301 | Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.) |
| ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) ∧ (Fun 𝐹 ∧ 𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {〈𝑋, 𝑌〉}) finSupp 𝑍 ↔ 𝐹 finSupp 𝑍)) | ||
| Theorem | fsuppres 9302 | The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019.) |
| ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) | ||
| Theorem | fmptssfisupp 9303* | The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) finSupp 𝑍) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵) finSupp 𝑍) | ||
| Theorem | ressuppfi 9304 | If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.) |
| ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) & ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) | ||
| Theorem | resfsupp 9305 | If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.) |
| ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) & ⊢ (𝜑 → 𝐺 finSupp 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
| Theorem | resfifsupp 9306 | The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.) |
| ⊢ (𝜑 → Fun 𝐹) & ⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝑋) finSupp 𝑍) | ||
| Theorem | ffsuppbi 9307 | Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.) |
| ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) | ||
| Theorem | fsuppmptif 9308* | A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ if(𝑘 ∈ 𝐷, (𝐹‘𝑘), 𝑍)) finSupp 𝑍) | ||
| Theorem | sniffsupp 9309* | A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
| Theorem | fsuppcolem 9310 | Lemma for fsuppco 9311. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) & ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) ⇒ ⊢ (𝜑 → (◡(𝐹 ∘ 𝐺) “ (V ∖ {𝑍})) ∈ Fin) | ||
| Theorem | fsuppco 9311 | The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.) |
| ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → 𝐺:𝑋–1-1→𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) finSupp 𝑍) | ||
| Theorem | fsuppco2 9312 | The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 9313 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.) |
| ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → (𝐺‘𝑍) = 𝑍) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 𝑍) | ||
| Theorem | fsuppcor 9313 | The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
| ⊢ (𝜑 → 0 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 finSupp 𝑍) & ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) | ||
| Theorem | mapfienlem1 9314* | Lemma 1 for mapfien 9317. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
| ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) | ||
| Theorem | mapfienlem2 9315* | Lemma 2 for mapfien 9317. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
| ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) finSupp 𝑍) | ||
| Theorem | mapfienlem3 9316* | Lemma 3 for mapfien 9317. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
| ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑇) → ((◡𝐺 ∘ 𝑔) ∘ ◡𝐹) ∈ 𝑆) | ||
| Theorem | mapfien 9317* | A bijection of the base sets induces a bijection on the set of finitely supported functions. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
| ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ 𝑊 = (𝐺‘𝑍) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑓 ∈ 𝑆 ↦ (𝐺 ∘ (𝑓 ∘ 𝐹))):𝑆–1-1-onto→𝑇) | ||
| Theorem | mapfien2 9318* | Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 0 } & ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} & ⊢ (𝜑 → 𝐴 ≈ 𝐶) & ⊢ (𝜑 → 𝐵 ≈ 𝐷) & ⊢ (𝜑 → 0 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝑆 ≈ 𝑇) | ||
| Syntax | cfi 9319 | Extend class notation with the function whose value is the class of finite intersections of the elements of a given set. |
| class fi | ||
| Definition | df-fi 9320* | Function whose value is the class of finite intersections of the elements of the argument. Note that the empty intersection being the universal class, hence a proper class, it cannot be an element of that class. Therefore, the function value is the class of nonempty finite intersections of elements of the argument (see elfi2 9323). (Contributed by FL, 27-Apr-2008.) |
| ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) | ||
| Theorem | fival 9321* | The set of all the finite intersections of the elements of 𝐴. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ∩ 𝑥}) | ||
| Theorem | elfi 9322* | Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) | ||
| Theorem | elfi2 9323* | The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝐴 = ∩ 𝑥)) | ||
| Theorem | elfir 9324 | Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝐴 ∈ (fi‘𝐵)) | ||
| Theorem | intrnfi 9325 | Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran 𝐹 ∈ (fi‘𝐵)) | ||
| Theorem | iinfi 9326* | An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (fi‘𝐶)) | ||
| Theorem | inelfi 9327 | The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) | ||
| Theorem | ssfii 9328 | Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | ||
| Theorem | fi0 9329 | The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (fi‘∅) = ∅ | ||
| Theorem | fieq0 9330 | A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) | ||
| Theorem | fiin 9331 | The elements of (fi‘𝐶) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐴 ∈ (fi‘𝐶) ∧ 𝐵 ∈ (fi‘𝐶)) → (𝐴 ∩ 𝐵) ∈ (fi‘𝐶)) | ||
| Theorem | dffi2 9332* | The set of finite intersections is the smallest set that contains 𝐴 and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∩ {𝑧 ∣ (𝐴 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 (𝑥 ∩ 𝑦) ∈ 𝑧)}) | ||
| Theorem | fiss 9333 | Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵)) | ||
| Theorem | inficl 9334* | A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴)) | ||
| Theorem | fipwuni 9335 | The set of finite intersections of a set is contained in the powerset of the union of the elements of 𝐴. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| ⊢ (fi‘𝐴) ⊆ 𝒫 ∪ 𝐴 | ||
| Theorem | fisn 9336 | A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (fi‘{𝐴}) = {𝐴} | ||
| Theorem | fiuni 9337 | The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) | ||
| Theorem | fipwss 9338 | If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
| ⊢ (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋) | ||
| Theorem | elfiun 9339* | A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.) |
| ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐾) → (𝐴 ∈ (fi‘(𝐵 ∪ 𝐶)) ↔ (𝐴 ∈ (fi‘𝐵) ∨ 𝐴 ∈ (fi‘𝐶) ∨ ∃𝑥 ∈ (fi‘𝐵)∃𝑦 ∈ (fi‘𝐶)𝐴 = (𝑥 ∩ 𝑦)))) | ||
| Theorem | dffi3 9340* | The set of finite intersections can be "constructed" inductively by iterating binary intersection ω-many times. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ 𝑅 = (𝑢 ∈ V ↦ ran (𝑦 ∈ 𝑢, 𝑧 ∈ 𝑢 ↦ (𝑦 ∩ 𝑧))) ⇒ ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ∪ (rec(𝑅, 𝐴) “ ω)) | ||
| Theorem | fifo 9341* | Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) | ||
| Theorem | marypha1lem 9342* | Core induction for Philip Hall's marriage theorem. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| ⊢ (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑒 ∈ 𝒫 𝑐𝑒:𝐴–1-1→V))) | ||
| Theorem | marypha1 9343* | (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ⊆ (𝐴 × 𝐵)) & ⊢ ((𝜑 ∧ 𝑑 ⊆ 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵) | ||
| Theorem | marypha2lem1 9344* | Lemma for marypha2 9348. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⇒ ⊢ 𝑇 ⊆ (𝐴 × ∪ ran 𝐹) | ||
| Theorem | marypha2lem2 9345* | Lemma for marypha2 9348. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⇒ ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐹‘𝑥))} | ||
| Theorem | marypha2lem3 9346* | Lemma for marypha2 9348. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐺 ⊆ 𝑇 ↔ ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) ∈ (𝐹‘𝑥))) | ||
| Theorem | marypha2lem4 9347* | Lemma for marypha2 9348. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × (𝐹‘𝑥)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑇 “ 𝑋) = ∪ (𝐹 “ 𝑋)) | ||
| Theorem | marypha2 9348* | Version of marypha1 9343 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐴⟶Fin) & ⊢ ((𝜑 ∧ 𝑑 ⊆ 𝐴) → 𝑑 ≼ ∪ (𝐹 “ 𝑑)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔:𝐴–1-1→V ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) | ||
| Syntax | csup 9349 | Extend class notation to include supremum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers. |
| class sup(𝐴, 𝐵, 𝑅) | ||
| Syntax | cinf 9350 | Extend class notation to include infimum of class 𝐴. Here 𝑅 is ordinarily a relation that strictly orders class 𝐵. For example, 𝑅 could be 'less than' and 𝐵 could be the set of real numbers. |
| class inf(𝐴, 𝐵, 𝑅) | ||
| Definition | df-sup 9351* | Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals whose square is less than 2; in this case the supremum is defined as the square root of 2 per sqrtval 15162. See dfsup2 9353 for alternate definition not requiring dummy variables. (Contributed by NM, 22-May-1999.) |
| ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} | ||
| Definition | df-inf 9352 | Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.) |
| ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | ||
| Theorem | dfsup2 9353 | Quantifier-free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ (𝐴 ∖ ((◡𝑅 “ 𝐵) ∪ (𝑅 “ (𝐴 ∖ (◡𝑅 “ 𝐵))))) | ||
| Theorem | supeq1 9354 | Equality theorem for supremum. (Contributed by NM, 22-May-1999.) |
| ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
| Theorem | supeq1d 9355 | Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | ||
| Theorem | supeq1i 9356 | Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅) | ||
| Theorem | supeq2 9357 | Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅)) | ||
| Theorem | supeq3 9358 | Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.) |
| ⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆)) | ||
| Theorem | supeq123d 9359 | Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹)) | ||
| Theorem | nfsup 9360 | Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) | ||
| Theorem | supmo 9361* | Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by NM, 5-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | supexd 9362 | A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V) | ||
| Theorem | supeu 9363* | A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by NM, 12-Oct-2004.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | supval2 9364* | Alternate expression for the supremum. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | ||
| Theorem | eqsup 9365* | Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
| Theorem | eqsupd 9366* | Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | supcl 9367* | A supremum belongs to its base class (closure law). See also supub 9368 and suplub 9369. (Contributed by NM, 12-Oct-2004.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | supub 9368* |
A supremum is an upper bound. See also supcl 9367 and suplub 9369.
This proof demonstrates how to expand an iota-based definition (df-iota 6442) using riotacl2 7326. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | suplub 9369* | A supremum is the least upper bound. See also supcl 9367 and supub 9368. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | ||
| Theorem | suplub2 9370* | Bidirectional form of suplub 9369. (Contributed by Mario Carneiro, 6-Sep-2014.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) | ||
| Theorem | supnub 9371* | An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) | ||
| Theorem | supssd 9372* | Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅sup(𝐵, 𝐴, 𝑅)) | ||
| Theorem | supex 9373 | A supremum is a set. (Contributed by NM, 22-May-1999.) |
| ⊢ 𝑅 Or 𝐴 ⇒ ⊢ sup(𝐵, 𝐴, 𝑅) ∈ V | ||
| Theorem | sup00 9374 | The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ sup(𝐵, ∅, 𝑅) = ∅ | ||
| Theorem | sup0riota 9375* | The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ (𝑅 Or 𝐴 → sup(∅, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥)) | ||
| Theorem | sup0 9376* | The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑋) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) → sup(∅, 𝐴, 𝑅) = 𝑋) | ||
| Theorem | supmax 9377* | The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) ⇒ ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | fisup2g 9378* | A finite set satisfies the conditions to have a supremum. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | ||
| Theorem | fisupcl 9379 | A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
| Theorem | supgtoreq 9380 | The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) | ||
| Theorem | suppr 9381 | The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶)) | ||
| Theorem | supsn 9382 | The supremum of a singleton. (Contributed by NM, 2-Oct-2007.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → sup({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
| Theorem | supisolem 9383* | Lemma for supiso 9385. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐷 ∈ 𝐴) → ((∀𝑦 ∈ 𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐷 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘𝐷)𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘𝐷) → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣)))) | ||
| Theorem | supisoex 9384* | Lemma for supiso 9385. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ 𝐵 (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑣))) | ||
| Theorem | supiso 9385* | Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅))) | ||
| Theorem | infeq1 9386 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
| Theorem | infeq1d 9387 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)) | ||
| Theorem | infeq1i 9388 | Equality inference for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅) | ||
| Theorem | infeq2 9389 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) | ||
| Theorem | infeq3 9390 | Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆)) | ||
| Theorem | infeq123d 9391 | Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 = 𝐷) & ⊢ (𝜑 → 𝐵 = 𝐸) & ⊢ (𝜑 → 𝐶 = 𝐹) ⇒ ⊢ (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹)) | ||
| Theorem | nfinf 9392 | Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥inf(𝐴, 𝐵, 𝑅) | ||
| Theorem | infexd 9393 | An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) | ||
| Theorem | eqinf 9394* | Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) | ||
| Theorem | eqinfd 9395* | Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | infval 9396* | Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = (℩𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)))) | ||
| Theorem | infcllem 9397* | Lemma for infcl 9398, inflb 9399, infglb 9400, etc. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥◡𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦◡𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦◡𝑅𝑧))) | ||
| Theorem | infcl 9398* | An infimum belongs to its base class (closure law). See also inflb 9399 and infglb 9400. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) | ||
| Theorem | inflb 9399* | An infimum is a lower bound. See also infcl 9398 and infglb 9400. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))) | ||
| Theorem | infglb 9400* | An infimum is the greatest lower bound. See also infcl 9398 and inflb 9399. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |