Home | Metamath
Proof Explorer Theorem List (p. 94 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | oiiniseg 9301 | ran 𝐹 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑁 ∈ 𝐴 ∧ 𝑀 ∈ dom 𝐹)) → ((𝐹‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝐹)) | ||
Theorem | ordtype2 9302 | For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto 𝐴 isomorphically. Otherwise, 𝐹 is a proper class, which implies that either ran 𝐹 ⊆ 𝐴 is a proper class or dom 𝐹 = On. This weak version of ordtype 9300 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiexg 9303 | The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) | ||
Theorem | oion 9304 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) | ||
Theorem | oiiso 9305 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oien 9306 | The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) | ||
Theorem | oieu 9307 | Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ((Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹))) | ||
Theorem | oismo 9308 | When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 5210 (the second statement is trivial under ax-rep 5210). (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso( E , 𝐴) ⇒ ⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) | ||
Theorem | oiid 9309 | The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | ||
Theorem | hartogslem1 9310* | Lemma for hartogs 9312. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) | ||
Theorem | hartogslem2 9311* | Lemma for hartogs 9312. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) | ||
Theorem | hartogs 9312* | The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 9310 and hartogslem2 9311) proof can be given using the axiom of choice, see ondomon 10328. As its label indicates, this result is used to justify the definition of the Hartogs function df-har 9325. (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
Theorem | wofib 9313 | The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) ↔ (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) | ||
Theorem | wemaplem1 9314* | Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊) → (𝑃𝑇𝑄 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑄‘𝑎) ∧ ∀𝑏 ∈ 𝐴 (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑄‘𝑏))))) | ||
Theorem | wemaplem2 9315* | Lemma for wemapso 9319. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) & ⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemaplem3 9316* | Lemma for wemapso 9319. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑃𝑇𝑋) & ⊢ (𝜑 → 𝑋𝑇𝑄) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemappo 9317* |
Construct lexicographic order on a function space based on a
well-ordering of the indices and a total ordering of the values.
Without totality on the values or least differing indices, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐵 ↑m 𝐴)) | ||
Theorem | wemapsolem 9318* | Lemma for wemapso 9319. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 ⊆ (𝐵 ↑m 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Or 𝐵) & ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ 𝑎 ≠ 𝑏)) → ∃𝑐 ∈ dom (𝑎 ∖ 𝑏)∀𝑑 ∈ dom (𝑎 ∖ 𝑏) ¬ 𝑑𝑅𝑐) ⇒ ⊢ (𝜑 → 𝑇 Or 𝑈) | ||
Theorem | wemapso 9319* | Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐵 ↑m 𝐴)) | ||
Theorem | wemapso2lem 9320* | Lemma for wemapso2 9321. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ 𝑊) → 𝑇 Or 𝑈) | ||
Theorem | wemapso2 9321* | An alternative to having a well-order on 𝑅 in wemapso 9319 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) | ||
Theorem | card2on 9322* | The alternate definition of the cardinal of a set given in cardval2 9758 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On | ||
Theorem | card2inf 9323* | The alternate definition of the cardinal of a set given in cardval2 9758 has the curious property that for non-numerable sets (for which ndmfv 6813 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
Syntax | char 9324 | Class symbol for the Hartogs function. |
class har | ||
Definition | df-har 9325* |
Define the Hartogs function as mapping a set to the class of ordinals it
dominates. That class is an ordinal by hartogs 9312, which is used in
harf 9326.
The Hartogs number of a set is the least ordinal not dominated by that set. Theorem harval2 9764 proves that the Hartogs function actually gives the Hartogs number for well-orderable sets. The Hartogs number of an ordinal is its cardinal successor. This is proved for finite ordinal in harsucnn 9765. Traditionally, the Hartogs number of a set 𝑋 is written ℵ(𝑋), and its cardinal successor, 𝑋 +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 9707. Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | ||
Theorem | harf 9326 | Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har:V⟶On | ||
Theorem | harcl 9327 | Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (har‘𝑋) ∈ On | ||
Theorem | harval 9328* | Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | ||
Theorem | elharval 9329 | The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9327, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) | ||
Theorem | harndom 9330 | The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ¬ (har‘𝑋) ≼ 𝑋 | ||
Theorem | harword 9331 | Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) | ||
Syntax | cwdom 9332 | Class symbol for the weak dominance relation. |
class ≼* | ||
Definition | df-wdom 9333* | A set is weakly dominated by a "larger" set if the "larger" set can be mapped onto the "smaller" set or the smaller set is empty, or equivalently, if the smaller set can be placed into bijection with some partition of the larger set. Dominance (df-dom 8744) implies weak dominance (over ZF). The principle asserting the converse is known as the partition principle and is independent of ZF. Theorem fodom 10288 proves that the axiom of choice implies the partition principle (over ZF). It is not known whether the partition principle is equivalent to the axiom of choice (over ZF), although it is know to imply dependent choice. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | ||
Theorem | relwdom 9334 | Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ Rel ≼* | ||
Theorem | brwdom 9335* | Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | ||
Theorem | brwdomi 9336* | Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
Theorem | brwdomn0 9337* | Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
Theorem | 0wdom 9338 | Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) | ||
Theorem | fowdom 9339 | An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) | ||
Theorem | wdomref 9340 | Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) | ||
Theorem | brwdom2 9341* | Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌∃𝑧 𝑧:𝑦–onto→𝑋)) | ||
Theorem | domwdom 9342 | Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | ||
Theorem | wdomtr 9343 | Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍) → 𝑋 ≼* 𝑍) | ||
Theorem | wdomen1 9344 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) | ||
Theorem | wdomen2 9345 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) | ||
Theorem | wdompwdom 9346 | Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) | ||
Theorem | canthwdom 9347 | Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 8926, equivalent to canth 7238). (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ¬ 𝒫 𝐴 ≼* 𝐴 | ||
Theorem | wdom2d 9348* | Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 5210). (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
Theorem | wdomd 9349* | Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
Theorem | brwdom3 9350* | Condition for weak dominance with a condition reminiscent of wdomd 9349. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | ||
Theorem | brwdom3i 9351* | Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝑋 ≼* 𝑌 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) | ||
Theorem | unwdomg 9352 | Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼* (𝐵 ∪ 𝐷)) | ||
Theorem | xpwdomg 9353 | Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)) | ||
Theorem | wdomima2g 9354 | A set is weakly dominant over its image under any function. This version of wdomimag 9355 is stated so as to avoid ax-rep 5210. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ (𝐹 “ 𝐴) ∈ 𝑊) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
Theorem | wdomimag 9355 | A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
Theorem | unxpwdom2 9356 | Lemma for unxpwdom 9357. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 × 𝐴) ≈ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
Theorem | unxpwdom 9357 | If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
Theorem | ixpiunwdom 9358* | Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg 8725 this shows that ∪ 𝑥 ∈ 𝐴𝐵 and X𝑥 ∈ 𝐴𝐵 have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* (X𝑥 ∈ 𝐴 𝐵 × 𝐴)) | ||
Theorem | harwdom 9359 | The value of the Hartogs function at a set 𝑋 is weakly dominated by 𝒫 (𝑋 × 𝑋). This follows from a more precise analysis of the bound used in hartogs 9312 to prove that (har‘𝑋) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋)) | ||
Axiom | ax-reg 9360* | Axiom of Regularity. An axiom of Zermelo-Fraenkel set theory. Also called the Axiom of Foundation. A rather non-intuitive axiom that denies more than it asserts, it states (in the form of zfreg 9363) that every nonempty set contains a set disjoint from itself. One consequence is that it denies the existence of a set containing itself (elirrv 9364). A stronger version that works for proper classes is proved as zfregs 9499. (Contributed by NM, 14-Aug-1993.) |
⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
Theorem | axreg2 9361* | Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | zfregcl 9362* | The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) | ||
Theorem | zfreg 9363* | The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form". Axiom Reg of [BellMachover] p. 480. There is also a "strong form", not requiring that 𝐴 be a set, that can be proved with more difficulty (see zfregs 9499). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | ||
Theorem | elirrv 9364 | The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9372 and efrirr 5571, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
⊢ ¬ 𝑥 ∈ 𝑥 | ||
Theorem | elirr 9365 | No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ ¬ 𝐴 ∈ 𝐴 | ||
Theorem | elneq 9366 | A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) | ||
Theorem | nelaneq 9367 | A class is not an element of and equal to a class at the same time. Variant of elneq 9366 analogously to elnotel 9377 and en2lp 9373. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) | ||
Theorem | epinid0 9368 | The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9367. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
⊢ ( E ∩ I ) = ∅ | ||
Theorem | sucprcreg 9369 | A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.) |
⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) | ||
Theorem | ruv 9370 | The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | ||
Theorem | ruALT 9371 | Alternate proof of ru 3716, simplified using (indirectly) the Axiom of Regularity ax-reg 9360. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Theorem | zfregfr 9372 | The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
⊢ E Fr 𝐴 | ||
Theorem | en2lp 9373 | No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | ||
Theorem | elnanel 9374 | Two classes are not elements of each other simultaneously. This is just a rewriting of en2lp 9373 and serves as an example in the context of Godel codes, see elnanelprv 33400. (Contributed by AV, 5-Nov-2023.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) | ||
Theorem | cnvepnep 9375 | The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9373. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.) |
⊢ (◡ E ∩ E ) = ∅ | ||
Theorem | epnsym 9376 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
⊢ ◡ E ≠ E | ||
Theorem | elnotel 9377 | A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
Theorem | elnel 9378 | A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) | ||
Theorem | en3lplem1 9379* | Lemma for en3lp 9381. (Contributed by Alan Sare, 28-Oct-2011.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) | ||
Theorem | en3lplem2 9380* | Lemma for en3lp 9381. (Contributed by Alan Sare, 28-Oct-2011.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) | ||
Theorem | en3lp 9381 | No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 42472 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) | ||
Theorem | preleqg 9382 | Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq 9383. (Contributed by AV, 15-Jun-2022.) |
⊢ (((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | preleq 9383 | Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Revised by AV, 15-Jun-2022.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | preleqALT 9384 | Alternate proof of preleq 9383, not based on preleqg 9382: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐵 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | opthreg 9385 | Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 9360 (via the preleq 9383 step). See df-op 4569 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof shortened by AV, 15-Jun-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | suc11reg 9386 | The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
⊢ (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵) | ||
Theorem | dford2 9387* | Assuming ax-reg 9360, an ordinal is a transitive class on which inclusion satisfies trichotomy. (Contributed by Scott Fenton, 27-Oct-2010.) |
⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥))) | ||
Theorem | inf0 9388* | Existence of ω implies our axiom of infinity ax-inf 9405. The proof shows that the especially contrived class "ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) " exists, is a subset of its union, and contains a given set 𝑥 (and thus is nonempty). Thus, it provides an example demonstrating that a set 𝑦 exists with the necessary properties demanded by ax-inf 9405. (Contributed by NM, 15-Oct-1996.) Revised to closed form. (Revised by BJ, 20-May-2024.) |
⊢ (ω ∈ 𝑉 → ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦)))) | ||
Theorem | inf1 9389 | Variation of Axiom of Infinity (using zfinf 9406 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.) |
⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) ⇒ ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | ||
Theorem | inf2 9390* | Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf 9406 as a hypothesis). Abbreviated version of the Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 28-Oct-1996.) |
⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) ⇒ ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) | ||
Theorem | inf3lema 9391* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 28-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) | ||
Theorem | inf3lemb 9392* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 28-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐹‘∅) = ∅ | ||
Theorem | inf3lemc 9393* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 28-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹‘𝐴))) | ||
Theorem | inf3lemd 9394* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 28-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) | ||
Theorem | inf3lem1 9395* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 28-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴)) | ||
Theorem | inf3lem2 9396* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 28-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ≠ 𝑥)) | ||
Theorem | inf3lem3 9397* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 9363. (Contributed by NM, 29-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) | ||
Theorem | inf3lem4 9398* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 29-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴))) | ||
Theorem | inf3lem5 9399* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 29-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴))) | ||
Theorem | inf3lem6 9400* | Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9402 for detailed description. (Contributed by NM, 29-Oct-1996.) |
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) & ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) & ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → 𝐹:ω–1-1→𝒫 𝑥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |