MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsupp Structured version   Visualization version   GIF version

Theorem isfsupp 9255
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
isfsupp ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))

Proof of Theorem isfsupp
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funeq 6502 . . . 4 (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅))
21adantr 480 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅))
3 oveq12 7358 . . . 4 ((𝑟 = 𝑅𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍))
43eleq1d 2813 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin))
52, 4anbi12d 632 . 2 ((𝑟 = 𝑅𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
6 df-fsupp 9252 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
75, 6brabga 5477 1 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  Fun wfun 6476  (class class class)co 7349   supp csupp 8093  Fincfn 8872   finSupp cfsupp 9251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-rel 5626  df-cnv 5627  df-co 5628  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-fsupp 9252
This theorem is referenced by:  isfsuppd  9256  funisfsupp  9257  fsuppimp  9258  fdmfifsupp  9265  fczfsuppd  9276  fsuppmptif  9289  fsuppco2  9293  fsuppcor  9294  mndpfsupp  18641  gsumzadd  19801  gsumpt  19841  gsum2dlem2  19850  gsum2d  19851  gsum2d2lem  19852  mhpmulcl  22034  rmfsupp2  33178  elrspunidl  33365  psrbasfsupp  33544  naddcnff  43339  rmfsupp  48361  scmfsupp  48363  mptcfsupp  48365
  Copyright terms: Public domain W3C validator