| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsupp | Structured version Visualization version GIF version | ||
| Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
| Ref | Expression |
|---|---|
| isfsupp | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6539 | . . . 4 ⊢ (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅)) |
| 3 | oveq12 7399 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍)) | |
| 4 | 3 | eleq1d 2814 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| 5 | 2, 4 | anbi12d 632 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 6 | df-fsupp 9320 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
| 7 | 5, 6 | brabga 5497 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 Fun wfun 6508 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-fsupp 9320 |
| This theorem is referenced by: isfsuppd 9324 funisfsupp 9325 fsuppimp 9326 fdmfifsupp 9333 fczfsuppd 9344 fsuppmptif 9357 fsuppco2 9361 fsuppcor 9362 mndpfsupp 18701 gsumzadd 19859 gsumpt 19899 gsum2dlem2 19908 gsum2d 19909 gsum2d2lem 19910 mhpmulcl 22043 rmfsupp2 33196 elrspunidl 33406 naddcnff 43358 rmfsupp 48365 scmfsupp 48367 mptcfsupp 48369 |
| Copyright terms: Public domain | W3C validator |