| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsupp | Structured version Visualization version GIF version | ||
| Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
| Ref | Expression |
|---|---|
| isfsupp | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6536 | . . . 4 ⊢ (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅)) |
| 3 | oveq12 7396 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍)) | |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| 5 | 2, 4 | anbi12d 632 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 6 | df-fsupp 9313 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
| 7 | 5, 6 | brabga 5494 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 Fun wfun 6505 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-fsupp 9313 |
| This theorem is referenced by: isfsuppd 9317 funisfsupp 9318 fsuppimp 9319 fdmfifsupp 9326 fczfsuppd 9337 fsuppmptif 9350 fsuppco2 9354 fsuppcor 9355 mndpfsupp 18694 gsumzadd 19852 gsumpt 19892 gsum2dlem2 19901 gsum2d 19902 gsum2d2lem 19903 mhpmulcl 22036 rmfsupp2 33189 elrspunidl 33399 naddcnff 43351 rmfsupp 48361 scmfsupp 48363 mptcfsupp 48365 |
| Copyright terms: Public domain | W3C validator |