MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsupp Structured version   Visualization version   GIF version

Theorem isfsupp 9132
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
isfsupp ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))

Proof of Theorem isfsupp
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funeq 6454 . . . 4 (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅))
21adantr 481 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅))
3 oveq12 7284 . . . 4 ((𝑟 = 𝑅𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍))
43eleq1d 2823 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin))
52, 4anbi12d 631 . 2 ((𝑟 = 𝑅𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
6 df-fsupp 9129 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
75, 6brabga 5447 1 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  Fun wfun 6427  (class class class)co 7275   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-fsupp 9129
This theorem is referenced by:  funisfsupp  9133  fsuppimp  9134  fdmfifsupp  9138  fczfsuppd  9146  fsuppmptif  9158  fsuppco2  9162  fsuppcor  9163  gsumzadd  19523  gsumpt  19563  gsum2dlem2  19572  gsum2d  19573  gsum2d2lem  19574  mhpmulcl  21339  rmfsupp2  31492  elrspunidl  31606  isfsuppd  40217  rmfsupp  45710  mndpfsupp  45712  scmfsupp  45714  mptcfsupp  45716
  Copyright terms: Public domain W3C validator