| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfsupp | Structured version Visualization version GIF version | ||
| Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
| Ref | Expression |
|---|---|
| isfsupp | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6501 | . . . 4 ⊢ (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅)) |
| 3 | oveq12 7355 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍)) | |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin)) |
| 5 | 2, 4 | anbi12d 632 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| 6 | df-fsupp 9246 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
| 7 | 5, 6 | brabga 5472 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 Fun wfun 6475 (class class class)co 7346 supp csupp 8090 Fincfn 8869 finSupp cfsupp 9245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-fsupp 9246 |
| This theorem is referenced by: isfsuppd 9250 funisfsupp 9251 fsuppimp 9252 fdmfifsupp 9259 fczfsuppd 9270 fsuppmptif 9283 fsuppco2 9287 fsuppcor 9288 mndpfsupp 18675 gsumzadd 19834 gsumpt 19874 gsum2dlem2 19883 gsum2d 19884 gsum2d2lem 19885 mhpmulcl 22064 rmfsupp2 33205 elrspunidl 33393 psrbasfsupp 33572 naddcnff 43465 rmfsupp 48483 scmfsupp 48485 mptcfsupp 48487 |
| Copyright terms: Public domain | W3C validator |