![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfsupp | Structured version Visualization version GIF version |
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
Ref | Expression |
---|---|
isfsupp | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 6598 | . . . 4 ⊢ (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅)) |
3 | oveq12 7457 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍)) | |
4 | 3 | eleq1d 2829 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin)) |
5 | 2, 4 | anbi12d 631 | . 2 ⊢ ((𝑟 = 𝑅 ∧ 𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
6 | df-fsupp 9432 | . 2 ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} | |
7 | 5, 6 | brabga 5553 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 Fun wfun 6567 (class class class)co 7448 supp csupp 8201 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-fsupp 9432 |
This theorem is referenced by: isfsuppd 9436 funisfsupp 9437 fsuppimp 9438 fdmfifsupp 9444 fczfsuppd 9455 fsuppmptif 9468 fsuppco2 9472 fsuppcor 9473 gsumzadd 19964 gsumpt 20004 gsum2dlem2 20013 gsum2d 20014 gsum2d2lem 20015 mhpmulcl 22176 rmfsupp2 33218 elrspunidl 33421 naddcnff 43324 rmfsupp 48099 mndpfsupp 48101 scmfsupp 48103 mptcfsupp 48105 |
Copyright terms: Public domain | W3C validator |