Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullfunfnv | Structured version Visualization version GIF version |
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fullfunfnv | ⊢ FullFun𝐹 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpartfun 34172 | . . . . 5 ⊢ Fun Funpart𝐹 | |
2 | funfn 6448 | . . . . 5 ⊢ (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ Funpart𝐹 Fn dom Funpart𝐹 |
4 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
5 | 4 | fconst 6644 | . . . . 5 ⊢ ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} |
6 | ffn 6584 | . . . . 5 ⊢ (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) |
8 | 3, 7 | pm3.2i 470 | . . 3 ⊢ (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) |
9 | disjdif 4402 | . . 3 ⊢ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ | |
10 | fnun 6529 | . . 3 ⊢ (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) | |
11 | 8, 9, 10 | mp2an 688 | . 2 ⊢ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
12 | df-fullfun 34104 | . . . 4 ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | |
13 | 12 | fneq1i 6514 | . . 3 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V) |
14 | unvdif 4405 | . . . . 5 ⊢ (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V | |
15 | 14 | eqcomi 2747 | . . . 4 ⊢ V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
16 | 15 | fneq2i 6515 | . . 3 ⊢ ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
17 | 13, 16 | bitri 274 | . 2 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
18 | 11, 17 | mpbir 230 | 1 ⊢ FullFun𝐹 Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 {csn 4558 × cxp 5578 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 Funpartcfunpart 34078 FullFuncfullfn 34079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-symdif 4173 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-eprel 5486 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-txp 34083 df-singleton 34091 df-singles 34092 df-image 34093 df-funpart 34103 df-fullfun 34104 |
This theorem is referenced by: brfullfun 34177 |
Copyright terms: Public domain | W3C validator |