Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfnv Structured version   Visualization version   GIF version

Theorem fullfunfnv 34577
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfnv FullFun𝐹 Fn V

Proof of Theorem fullfunfnv
StepHypRef Expression
1 funpartfun 34574 . . . . 5 Fun Funpart𝐹
2 funfn 6532 . . . . 5 (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹)
31, 2mpbi 229 . . . 4 Funpart𝐹 Fn dom Funpart𝐹
4 0ex 5265 . . . . . 6 ∅ ∈ V
54fconst 6729 . . . . 5 ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅}
6 ffn 6669 . . . . 5 (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
75, 6ax-mp 5 . . . 4 ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)
83, 7pm3.2i 472 . . 3 (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
9 disjdif 4432 . . 3 (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅
10 fnun 6615 . . 3 (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
118, 9, 10mp2an 691 . 2 (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))
12 df-fullfun 34506 . . . 4 FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
1312fneq1i 6600 . . 3 (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V)
14 unvdif 4435 . . . . 5 (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V
1514eqcomi 2742 . . . 4 V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))
1615fneq2i 6601 . . 3 ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
1713, 16bitri 275 . 2 (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
1811, 17mpbir 230 1 FullFun𝐹 Fn V
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  Vcvv 3444  cdif 3908  cun 3909  cin 3910  c0 4283  {csn 4587   × cxp 5632  dom cdm 5634  Fun wfun 6491   Fn wfn 6492  wf 6493  Funpartcfunpart 34480  FullFuncfullfn 34481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4203  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-eprel 5538  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-1st 7922  df-2nd 7923  df-txp 34485  df-singleton 34493  df-singles 34494  df-image 34495  df-funpart 34505  df-fullfun 34506
This theorem is referenced by:  brfullfun  34579
  Copyright terms: Public domain W3C validator