Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfnv Structured version   Visualization version   GIF version

Theorem fullfunfnv 36062
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfnv FullFun𝐹 Fn V

Proof of Theorem fullfunfnv
StepHypRef Expression
1 funpartfun 36059 . . . . 5 Fun Funpart𝐹
2 funfn 6519 . . . . 5 (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹)
31, 2mpbi 230 . . . 4 Funpart𝐹 Fn dom Funpart𝐹
4 0ex 5249 . . . . . 6 ∅ ∈ V
54fconst 6717 . . . . 5 ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅}
6 ffn 6659 . . . . 5 (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
75, 6ax-mp 5 . . . 4 ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)
83, 7pm3.2i 470 . . 3 (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
9 disjdif 4421 . . 3 (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅
10 fnun 6603 . . 3 (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
118, 9, 10mp2an 692 . 2 (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))
12 df-fullfun 35989 . . . 4 FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
1312fneq1i 6586 . . 3 (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V)
14 unvdif 4424 . . . . 5 (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V
1514eqcomi 2742 . . . 4 V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))
1615fneq2i 6587 . . 3 ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
1713, 16bitri 275 . 2 (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)))
1811, 17mpbir 231 1 FullFun𝐹 Fn V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  Vcvv 3437  cdif 3895  cun 3896  cin 3897  c0 4282  {csn 4577   × cxp 5619  dom cdm 5621  Fun wfun 6483   Fn wfn 6484  wf 6485  Funpartcfunpart 35963  FullFuncfullfn 35964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-1st 7930  df-2nd 7931  df-txp 35968  df-singleton 35976  df-singles 35977  df-image 35978  df-funpart 35988  df-fullfun 35989
This theorem is referenced by:  brfullfun  36064
  Copyright terms: Public domain W3C validator