![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullfunfnv | Structured version Visualization version GIF version |
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fullfunfnv | ⊢ FullFun𝐹 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpartfun 32555 | . . . . 5 ⊢ Fun Funpart𝐹 | |
2 | funfn 6129 | . . . . 5 ⊢ (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹) | |
3 | 1, 2 | mpbi 222 | . . . 4 ⊢ Funpart𝐹 Fn dom Funpart𝐹 |
4 | 0ex 4982 | . . . . . 6 ⊢ ∅ ∈ V | |
5 | 4 | fconst 6304 | . . . . 5 ⊢ ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} |
6 | ffn 6254 | . . . . 5 ⊢ (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) |
8 | 3, 7 | pm3.2i 463 | . . 3 ⊢ (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) |
9 | disjdif 4232 | . . 3 ⊢ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ | |
10 | fnun 6206 | . . 3 ⊢ (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) | |
11 | 8, 9, 10 | mp2an 684 | . 2 ⊢ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
12 | df-fullfun 32487 | . . . 4 ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | |
13 | 12 | fneq1i 6194 | . . 3 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V) |
14 | unvdif 4234 | . . . . 5 ⊢ (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V | |
15 | 14 | eqcomi 2806 | . . . 4 ⊢ V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
16 | 15 | fneq2i 6195 | . . 3 ⊢ ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
17 | 13, 16 | bitri 267 | . 2 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
18 | 11, 17 | mpbir 223 | 1 ⊢ FullFun𝐹 Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 = wceq 1653 Vcvv 3383 ∖ cdif 3764 ∪ cun 3765 ∩ cin 3766 ∅c0 4113 {csn 4366 × cxp 5308 dom cdm 5310 Fun wfun 6093 Fn wfn 6094 ⟶wf 6095 Funpartcfunpart 32461 FullFuncfullfn 32462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-symdif 4039 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-eprel 5223 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fo 6105 df-fv 6107 df-1st 7399 df-2nd 7400 df-txp 32466 df-singleton 32474 df-singles 32475 df-image 32476 df-funpart 32486 df-fullfun 32487 |
This theorem is referenced by: brfullfun 32560 |
Copyright terms: Public domain | W3C validator |