Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullfunfnv | Structured version Visualization version GIF version |
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fullfunfnv | ⊢ FullFun𝐹 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpartfun 34245 | . . . . 5 ⊢ Fun Funpart𝐹 | |
2 | funfn 6464 | . . . . 5 ⊢ (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ Funpart𝐹 Fn dom Funpart𝐹 |
4 | 0ex 5231 | . . . . . 6 ⊢ ∅ ∈ V | |
5 | 4 | fconst 6660 | . . . . 5 ⊢ ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} |
6 | ffn 6600 | . . . . 5 ⊢ (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) |
8 | 3, 7 | pm3.2i 471 | . . 3 ⊢ (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) |
9 | disjdif 4405 | . . 3 ⊢ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ | |
10 | fnun 6545 | . . 3 ⊢ (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) | |
11 | 8, 9, 10 | mp2an 689 | . 2 ⊢ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
12 | df-fullfun 34177 | . . . 4 ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | |
13 | 12 | fneq1i 6530 | . . 3 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V) |
14 | unvdif 4408 | . . . . 5 ⊢ (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V | |
15 | 14 | eqcomi 2747 | . . . 4 ⊢ V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
16 | 15 | fneq2i 6531 | . . 3 ⊢ ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
17 | 13, 16 | bitri 274 | . 2 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
18 | 11, 17 | mpbir 230 | 1 ⊢ FullFun𝐹 Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 × cxp 5587 dom cdm 5589 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 Funpartcfunpart 34151 FullFuncfullfn 34152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-singleton 34164 df-singles 34165 df-image 34166 df-funpart 34176 df-fullfun 34177 |
This theorem is referenced by: brfullfun 34250 |
Copyright terms: Public domain | W3C validator |