![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullfunfnv | Structured version Visualization version GIF version |
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fullfunfnv | ⊢ FullFun𝐹 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpartfun 34574 | . . . . 5 ⊢ Fun Funpart𝐹 | |
2 | funfn 6532 | . . . . 5 ⊢ (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ Funpart𝐹 Fn dom Funpart𝐹 |
4 | 0ex 5265 | . . . . . 6 ⊢ ∅ ∈ V | |
5 | 4 | fconst 6729 | . . . . 5 ⊢ ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} |
6 | ffn 6669 | . . . . 5 ⊢ (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) |
8 | 3, 7 | pm3.2i 472 | . . 3 ⊢ (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) |
9 | disjdif 4432 | . . 3 ⊢ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ | |
10 | fnun 6615 | . . 3 ⊢ (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) | |
11 | 8, 9, 10 | mp2an 691 | . 2 ⊢ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
12 | df-fullfun 34506 | . . . 4 ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | |
13 | 12 | fneq1i 6600 | . . 3 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V) |
14 | unvdif 4435 | . . . . 5 ⊢ (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V | |
15 | 14 | eqcomi 2742 | . . . 4 ⊢ V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
16 | 15 | fneq2i 6601 | . . 3 ⊢ ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
17 | 13, 16 | bitri 275 | . 2 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
18 | 11, 17 | mpbir 230 | 1 ⊢ FullFun𝐹 Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ∅c0 4283 {csn 4587 × cxp 5632 dom cdm 5634 Fun wfun 6491 Fn wfn 6492 ⟶wf 6493 Funpartcfunpart 34480 FullFuncfullfn 34481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-symdif 4203 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-eprel 5538 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-1st 7922 df-2nd 7923 df-txp 34485 df-singleton 34493 df-singles 34494 df-image 34495 df-funpart 34505 df-fullfun 34506 |
This theorem is referenced by: brfullfun 34579 |
Copyright terms: Public domain | W3C validator |