![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullfunfnv | Structured version Visualization version GIF version |
Description: The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
fullfunfnv | ⊢ FullFun𝐹 Fn V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpartfun 35925 | . . . . 5 ⊢ Fun Funpart𝐹 | |
2 | funfn 6598 | . . . . 5 ⊢ (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹) | |
3 | 1, 2 | mpbi 230 | . . . 4 ⊢ Funpart𝐹 Fn dom Funpart𝐹 |
4 | 0ex 5313 | . . . . . 6 ⊢ ∅ ∈ V | |
5 | 4 | fconst 6795 | . . . . 5 ⊢ ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} |
6 | ffn 6737 | . . . . 5 ⊢ (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) |
8 | 3, 7 | pm3.2i 470 | . . 3 ⊢ (Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) |
9 | disjdif 4478 | . . 3 ⊢ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ | |
10 | fnun 6683 | . . 3 ⊢ (((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)) ∧ (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅) → (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) | |
11 | 8, 9, 10 | mp2an 692 | . 2 ⊢ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
12 | df-fullfun 35857 | . . . 4 ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | |
13 | 12 | fneq1i 6666 | . . 3 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V) |
14 | unvdif 4481 | . . . . 5 ⊢ (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) = V | |
15 | 14 | eqcomi 2744 | . . . 4 ⊢ V = (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹)) |
16 | 15 | fneq2i 6667 | . . 3 ⊢ ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
17 | 13, 16 | bitri 275 | . 2 ⊢ (FullFun𝐹 Fn V ↔ (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) Fn (dom Funpart𝐹 ∪ (V ∖ dom Funpart𝐹))) |
18 | 11, 17 | mpbir 231 | 1 ⊢ FullFun𝐹 Fn V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 × cxp 5687 dom cdm 5689 Fun wfun 6557 Fn wfn 6558 ⟶wf 6559 Funpartcfunpart 35831 FullFuncfullfn 35832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-symdif 4259 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1st 8013 df-2nd 8014 df-txp 35836 df-singleton 35844 df-singles 35845 df-image 35846 df-funpart 35856 df-fullfun 35857 |
This theorem is referenced by: brfullfun 35930 |
Copyright terms: Public domain | W3C validator |