Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfv Structured version   Visualization version   GIF version

Theorem fullfunfv 33410
Description: The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfv (FullFun𝐹𝐴) = (𝐹𝐴)

Proof of Theorem fullfunfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . 4 (𝑥 = 𝐴 → (FullFun𝐹𝑥) = (FullFun𝐹𝐴))
2 fveq2 6672 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
31, 2eqeq12d 2839 . . 3 (𝑥 = 𝐴 → ((FullFun𝐹𝑥) = (𝐹𝑥) ↔ (FullFun𝐹𝐴) = (𝐹𝐴)))
4 df-fullfun 33338 . . . . 5 FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
54fveq1i 6673 . . . 4 (FullFun𝐹𝑥) = ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥)
6 disjdif 4423 . . . . . 6 (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅
7 funpartfun 33406 . . . . . . . 8 Fun Funpart𝐹
8 funfn 6387 . . . . . . . 8 (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹)
97, 8mpbi 232 . . . . . . 7 Funpart𝐹 Fn dom Funpart𝐹
10 0ex 5213 . . . . . . . . 9 ∅ ∈ V
1110fconst 6567 . . . . . . . 8 ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅}
12 ffn 6516 . . . . . . . 8 (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
1311, 12ax-mp 5 . . . . . . 7 ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)
14 fvun1 6756 . . . . . . 7 ((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) ∧ ((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ dom Funpart𝐹)) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
159, 13, 14mp3an12 1447 . . . . . 6 (((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
166, 15mpan 688 . . . . 5 (𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
17 vex 3499 . . . . . . . 8 𝑥 ∈ V
18 eldif 3948 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom Funpart𝐹))
1917, 18mpbiran 707 . . . . . . 7 (𝑥 ∈ (V ∖ dom Funpart𝐹) ↔ ¬ 𝑥 ∈ dom Funpart𝐹)
20 fvun2 6757 . . . . . . . . . 10 ((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) ∧ ((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ (V ∖ dom Funpart𝐹))) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
219, 13, 20mp3an12 1447 . . . . . . . . 9 (((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ (V ∖ dom Funpart𝐹)) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
226, 21mpan 688 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
2310fvconst2 6968 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) → (((V ∖ dom Funpart𝐹) × {∅})‘𝑥) = ∅)
2422, 23eqtrd 2858 . . . . . . 7 (𝑥 ∈ (V ∖ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = ∅)
2519, 24sylbir 237 . . . . . 6 𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = ∅)
26 ndmfv 6702 . . . . . 6 𝑥 ∈ dom Funpart𝐹 → (Funpart𝐹𝑥) = ∅)
2725, 26eqtr4d 2861 . . . . 5 𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
2816, 27pm2.61i 184 . . . 4 ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥)
29 funpartfv 33408 . . . 4 (Funpart𝐹𝑥) = (𝐹𝑥)
305, 28, 293eqtri 2850 . . 3 (FullFun𝐹𝑥) = (𝐹𝑥)
313, 30vtoclg 3569 . 2 (𝐴 ∈ V → (FullFun𝐹𝐴) = (𝐹𝐴))
32 fvprc 6665 . . 3 𝐴 ∈ V → (FullFun𝐹𝐴) = ∅)
33 fvprc 6665 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
3432, 33eqtr4d 2861 . 2 𝐴 ∈ V → (FullFun𝐹𝐴) = (𝐹𝐴))
3531, 34pm2.61i 184 1 (FullFun𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  cun 3936  cin 3937  c0 4293  {csn 4569   × cxp 5555  dom cdm 5557  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  Funpartcfunpart 33312  FullFuncfullfn 33313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-symdif 4221  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-eprel 5467  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-txp 33317  df-singleton 33325  df-singles 33326  df-image 33327  df-funpart 33337  df-fullfun 33338
This theorem is referenced by:  brfullfun  33411
  Copyright terms: Public domain W3C validator