Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfv Structured version   Visualization version   GIF version

Theorem fullfunfv 35928
Description: The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfv (FullFun𝐹𝐴) = (𝐹𝐴)

Proof of Theorem fullfunfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑥 = 𝐴 → (FullFun𝐹𝑥) = (FullFun𝐹𝐴))
2 fveq2 6906 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
31, 2eqeq12d 2750 . . 3 (𝑥 = 𝐴 → ((FullFun𝐹𝑥) = (𝐹𝑥) ↔ (FullFun𝐹𝐴) = (𝐹𝐴)))
4 df-fullfun 35856 . . . . 5 FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
54fveq1i 6907 . . . 4 (FullFun𝐹𝑥) = ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥)
6 disjdif 4477 . . . . . 6 (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅
7 funpartfun 35924 . . . . . . . 8 Fun Funpart𝐹
8 funfn 6597 . . . . . . . 8 (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹)
97, 8mpbi 230 . . . . . . 7 Funpart𝐹 Fn dom Funpart𝐹
10 0ex 5312 . . . . . . . . 9 ∅ ∈ V
1110fconst 6794 . . . . . . . 8 ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅}
12 ffn 6736 . . . . . . . 8 (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
1311, 12ax-mp 5 . . . . . . 7 ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)
14 fvun1 6999 . . . . . . 7 ((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) ∧ ((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ dom Funpart𝐹)) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
159, 13, 14mp3an12 1450 . . . . . 6 (((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
166, 15mpan 690 . . . . 5 (𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
17 vex 3481 . . . . . . . 8 𝑥 ∈ V
18 eldif 3972 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom Funpart𝐹))
1917, 18mpbiran 709 . . . . . . 7 (𝑥 ∈ (V ∖ dom Funpart𝐹) ↔ ¬ 𝑥 ∈ dom Funpart𝐹)
20 fvun2 7000 . . . . . . . . . 10 ((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) ∧ ((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ (V ∖ dom Funpart𝐹))) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
219, 13, 20mp3an12 1450 . . . . . . . . 9 (((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ (V ∖ dom Funpart𝐹)) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
226, 21mpan 690 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
2310fvconst2 7223 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) → (((V ∖ dom Funpart𝐹) × {∅})‘𝑥) = ∅)
2422, 23eqtrd 2774 . . . . . . 7 (𝑥 ∈ (V ∖ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = ∅)
2519, 24sylbir 235 . . . . . 6 𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = ∅)
26 ndmfv 6941 . . . . . 6 𝑥 ∈ dom Funpart𝐹 → (Funpart𝐹𝑥) = ∅)
2725, 26eqtr4d 2777 . . . . 5 𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
2816, 27pm2.61i 182 . . . 4 ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥)
29 funpartfv 35926 . . . 4 (Funpart𝐹𝑥) = (𝐹𝑥)
305, 28, 293eqtri 2766 . . 3 (FullFun𝐹𝑥) = (𝐹𝑥)
313, 30vtoclg 3553 . 2 (𝐴 ∈ V → (FullFun𝐹𝐴) = (𝐹𝐴))
32 fvprc 6898 . . 3 𝐴 ∈ V → (FullFun𝐹𝐴) = ∅)
33 fvprc 6898 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
3432, 33eqtr4d 2777 . 2 𝐴 ∈ V → (FullFun𝐹𝐴) = (𝐹𝐴))
3531, 34pm2.61i 182 1 (FullFun𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cdif 3959  cun 3960  cin 3961  c0 4338  {csn 4630   × cxp 5686  dom cdm 5688  Fun wfun 6556   Fn wfn 6557  wf 6558  cfv 6562  Funpartcfunpart 35830  FullFuncfullfn 35831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-symdif 4258  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-eprel 5588  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fo 6568  df-fv 6570  df-1st 8012  df-2nd 8013  df-txp 35835  df-singleton 35843  df-singles 35844  df-image 35845  df-funpart 35855  df-fullfun 35856
This theorem is referenced by:  brfullfun  35929
  Copyright terms: Public domain W3C validator