Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullfunfv Structured version   Visualization version   GIF version

Theorem fullfunfv 36012
Description: The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fullfunfv (FullFun𝐹𝐴) = (𝐹𝐴)

Proof of Theorem fullfunfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . 4 (𝑥 = 𝐴 → (FullFun𝐹𝑥) = (FullFun𝐹𝐴))
2 fveq2 6828 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
31, 2eqeq12d 2749 . . 3 (𝑥 = 𝐴 → ((FullFun𝐹𝑥) = (𝐹𝑥) ↔ (FullFun𝐹𝐴) = (𝐹𝐴)))
4 df-fullfun 35938 . . . . 5 FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
54fveq1i 6829 . . . 4 (FullFun𝐹𝑥) = ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥)
6 disjdif 4421 . . . . . 6 (dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅
7 funpartfun 36008 . . . . . . . 8 Fun Funpart𝐹
8 funfn 6516 . . . . . . . 8 (Fun Funpart𝐹 ↔ Funpart𝐹 Fn dom Funpart𝐹)
97, 8mpbi 230 . . . . . . 7 Funpart𝐹 Fn dom Funpart𝐹
10 0ex 5247 . . . . . . . . 9 ∅ ∈ V
1110fconst 6714 . . . . . . . 8 ((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅}
12 ffn 6656 . . . . . . . 8 (((V ∖ dom Funpart𝐹) × {∅}):(V ∖ dom Funpart𝐹)⟶{∅} → ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹))
1311, 12ax-mp 5 . . . . . . 7 ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹)
14 fvun1 6919 . . . . . . 7 ((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) ∧ ((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ dom Funpart𝐹)) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
159, 13, 14mp3an12 1453 . . . . . 6 (((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
166, 15mpan 690 . . . . 5 (𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
17 vex 3441 . . . . . . . 8 𝑥 ∈ V
18 eldif 3908 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom Funpart𝐹))
1917, 18mpbiran 709 . . . . . . 7 (𝑥 ∈ (V ∖ dom Funpart𝐹) ↔ ¬ 𝑥 ∈ dom Funpart𝐹)
20 fvun2 6920 . . . . . . . . . 10 ((Funpart𝐹 Fn dom Funpart𝐹 ∧ ((V ∖ dom Funpart𝐹) × {∅}) Fn (V ∖ dom Funpart𝐹) ∧ ((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ (V ∖ dom Funpart𝐹))) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
219, 13, 20mp3an12 1453 . . . . . . . . 9 (((dom Funpart𝐹 ∩ (V ∖ dom Funpart𝐹)) = ∅ ∧ 𝑥 ∈ (V ∖ dom Funpart𝐹)) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
226, 21mpan 690 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (((V ∖ dom Funpart𝐹) × {∅})‘𝑥))
2310fvconst2 7144 . . . . . . . 8 (𝑥 ∈ (V ∖ dom Funpart𝐹) → (((V ∖ dom Funpart𝐹) × {∅})‘𝑥) = ∅)
2422, 23eqtrd 2768 . . . . . . 7 (𝑥 ∈ (V ∖ dom Funpart𝐹) → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = ∅)
2519, 24sylbir 235 . . . . . 6 𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = ∅)
26 ndmfv 6860 . . . . . 6 𝑥 ∈ dom Funpart𝐹 → (Funpart𝐹𝑥) = ∅)
2725, 26eqtr4d 2771 . . . . 5 𝑥 ∈ dom Funpart𝐹 → ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥))
2816, 27pm2.61i 182 . . . 4 ((Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))‘𝑥) = (Funpart𝐹𝑥)
29 funpartfv 36010 . . . 4 (Funpart𝐹𝑥) = (𝐹𝑥)
305, 28, 293eqtri 2760 . . 3 (FullFun𝐹𝑥) = (𝐹𝑥)
313, 30vtoclg 3508 . 2 (𝐴 ∈ V → (FullFun𝐹𝐴) = (𝐹𝐴))
32 fvprc 6820 . . 3 𝐴 ∈ V → (FullFun𝐹𝐴) = ∅)
33 fvprc 6820 . . 3 𝐴 ∈ V → (𝐹𝐴) = ∅)
3432, 33eqtr4d 2771 . 2 𝐴 ∈ V → (FullFun𝐹𝐴) = (𝐹𝐴))
3531, 34pm2.61i 182 1 (FullFun𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  cin 3897  c0 4282  {csn 4575   × cxp 5617  dom cdm 5619  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  Funpartcfunpart 35912  FullFuncfullfn 35913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7927  df-2nd 7928  df-txp 35917  df-singleton 35925  df-singles 35926  df-image 35927  df-funpart 35937  df-fullfun 35938
This theorem is referenced by:  brfullfun  36013
  Copyright terms: Public domain W3C validator