| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fzo | Structured version Visualization version GIF version | ||
| Description: Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 13548, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 13732 with fzsplit 13590, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df-fzo | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfzo 13694 | . 2 class ..^ | |
| 2 | vm | . . 3 setvar 𝑚 | |
| 3 | vn | . . 3 setvar 𝑛 | |
| 4 | cz 12613 | . . 3 class ℤ | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑚 |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑛 |
| 7 | c1 11156 | . . . . 5 class 1 | |
| 8 | cmin 11492 | . . . . 5 class − | |
| 9 | 6, 7, 8 | co 7431 | . . . 4 class (𝑛 − 1) |
| 10 | cfz 13547 | . . . 4 class ... | |
| 11 | 5, 9, 10 | co 7431 | . . 3 class (𝑚...(𝑛 − 1)) |
| 12 | 2, 3, 4, 4, 11 | cmpo 7433 | . 2 class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
| 13 | 1, 12 | wceq 1540 | 1 wff ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: fzof 13696 fzoval 13700 |
| Copyright terms: Public domain | W3C validator |