Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fzo | Structured version Visualization version GIF version |
Description: Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 13169, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 13348 with fzsplit 13211, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
df-fzo | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfzo 13311 | . 2 class ..^ | |
2 | vm | . . 3 setvar 𝑚 | |
3 | vn | . . 3 setvar 𝑛 | |
4 | cz 12249 | . . 3 class ℤ | |
5 | 2 | cv 1538 | . . . 4 class 𝑚 |
6 | 3 | cv 1538 | . . . . 5 class 𝑛 |
7 | c1 10803 | . . . . 5 class 1 | |
8 | cmin 11135 | . . . . 5 class − | |
9 | 6, 7, 8 | co 7255 | . . . 4 class (𝑛 − 1) |
10 | cfz 13168 | . . . 4 class ... | |
11 | 5, 9, 10 | co 7255 | . . 3 class (𝑚...(𝑛 − 1)) |
12 | 2, 3, 4, 4, 11 | cmpo 7257 | . 2 class (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
13 | 1, 12 | wceq 1539 | 1 wff ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
Colors of variables: wff setvar class |
This definition is referenced by: fzof 13313 fzoval 13317 |
Copyright terms: Public domain | W3C validator |