| Metamath
Proof Explorer Theorem List (p. 137 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elfzolem1 13601 | A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) | ||
| Theorem | elfzo0subge1 13602 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 1 ≤ (𝐵 − 𝐴)) | ||
| Theorem | elfzo0suble 13603 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → (𝐵 − 𝐴) ≤ 𝐵) | ||
| Theorem | elfzonn0 13604 | A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | fzonmapblen 13605 | The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) | ||
| Theorem | fzofzim 13606 | If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀)) | ||
| Theorem | fz1fzo0m1 13607 | Translation of one between closed and open integer ranges. (Contributed by Thierry Arnoux, 28-Jul-2020.) |
| ⊢ (𝑀 ∈ (1...𝑁) → (𝑀 − 1) ∈ (0..^𝑁)) | ||
| Theorem | fzossnn 13608 | Half-open integer ranges starting with 1 are subsets of ℕ. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
| ⊢ (1..^𝑁) ⊆ ℕ | ||
| Theorem | elfzo1 13609 | Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) | ||
| Theorem | fzo1lb 13610 | 1 is the left endpoint of a half-open integer range based at 1 iff the right endpoint is an integer greater than 1. (Contributed by AV, 4-Sep-2025.) |
| ⊢ (1 ∈ (1..^𝑁) ↔ 𝑁 ∈ (ℤ≥‘2)) | ||
| Theorem | 1elfzo1 13611 | 1 is in a half-open range of positive integers iff its upper bound is greater than 1. (Contributed by AV, 22-Nov-2022.) |
| ⊢ (1 ∈ (1..^𝑀) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀)) | ||
| Theorem | fzo1fzo0n0 13612 | An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| ⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0)) | ||
| Theorem | fzo0n0 13613 | A half-open integer range based at 0 is nonempty precisely if the upper bound is a positive integer. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((0..^𝐴) ≠ ∅ ↔ 𝐴 ∈ ℕ) | ||
| Theorem | fzoaddel 13614 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) | ||
| Theorem | fzo0addel 13615 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐶 + 𝐷))) | ||
| Theorem | fzo0addelr 13616 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐷 + 𝐶))) | ||
| Theorem | fzoaddel2 13617 | Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0..^(𝐵 − 𝐶)) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐶) ∈ (𝐶..^𝐵)) | ||
| Theorem | elfzoextl 13618 | Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) | ||
| Theorem | elfzoext 13619 | Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) | ||
| Theorem | elincfzoext 13620 | Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼))) | ||
| Theorem | fzosubel 13621 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐷) ∈ ((𝐵 − 𝐷)..^(𝐶 − 𝐷))) | ||
| Theorem | fzosubel2 13622 | Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ ((𝐵 + 𝐶)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (𝐶..^𝐷)) | ||
| Theorem | fzosubel3 13623 | Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐵) ∈ (0..^𝐷)) | ||
| Theorem | eluzgtdifelfzo 13624 | Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ≥‘𝐴) ∧ 𝐵 < 𝐴) → (𝑁 − 𝐴) ∈ (0..^(𝑁 − 𝐵)))) | ||
| Theorem | ige2m2fzo 13625 | Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1))) | ||
| Theorem | fzocatel 13626 | Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) | ||
| Theorem | ubmelfzo 13627 | If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) | ||
| Theorem | elfzodifsumelfzo 13628 | If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁 − 𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))) | ||
| Theorem | elfzom1elp1fzo 13629 | Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) | ||
| Theorem | elfzom1elfzo 13630 | Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^𝑁)) | ||
| Theorem | fzval3 13631 | Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) | ||
| Theorem | fz0add1fz1 13632 | Translate membership in a 0-based half-open integer range into membership in a 1-based finite sequence of integers. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ (0..^𝑁)) → (𝑋 + 1) ∈ (1...𝑁)) | ||
| Theorem | fzosn 13633 | Expressing a singleton as a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ ℤ → (𝐴..^(𝐴 + 1)) = {𝐴}) | ||
| Theorem | elfzomin 13634 | Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ (𝑍 ∈ ℤ → 𝑍 ∈ (𝑍..^(𝑍 + 1))) | ||
| Theorem | zpnn0elfzo 13635 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1))) | ||
| Theorem | zpnn0elfzo1 13636 | Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1)))) | ||
| Theorem | fzosplitsnm1 13637 | Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) | ||
| Theorem | elfzonlteqm1 13638 | If an element of a half-open integer range is not less than the upper bound of the range decreased by 1, it must be equal to the upper bound of the range decreased by 1. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝐵) ∧ ¬ 𝐴 < (𝐵 − 1)) → 𝐴 = (𝐵 − 1)) | ||
| Theorem | fzonn0p1 13639 | A nonnegative integer is an element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0..^(𝑁 + 1))) | ||
| Theorem | fzossfzop1 13640 | A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1))) | ||
| Theorem | fzonn0p1p1 13641 | If a nonnegative integer is an element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.) |
| ⊢ (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1))) | ||
| Theorem | elfzom1p1elfzo 13642 | Increasing an element of a half-open range of nonnegative integers by 1 results in an element of the half-open range of nonnegative integers with an upper bound increased by 1. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Proof shortened by Thierry Arnoux, 14-Dec-2023.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (0..^(𝑁 − 1))) → (𝑋 + 1) ∈ (0..^𝑁)) | ||
| Theorem | fzo0ssnn0 13643 | Half-open integer ranges starting with 0 are subsets of NN0. (Contributed by Thierry Arnoux, 8-Oct-2018.) (Proof shortened by JJ, 1-Jun-2021.) |
| ⊢ (0..^𝑁) ⊆ ℕ0 | ||
| Theorem | fzo01 13644 | Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (0..^1) = {0} | ||
| Theorem | fzo12sn 13645 | A 1-based half-open integer interval up to, but not including, 2 is a singleton. (Contributed by Alexander van der Vekens, 31-Jan-2018.) |
| ⊢ (1..^2) = {1} | ||
| Theorem | fzo13pr 13646 | A 1-based half-open integer interval up to, but not including, 3 is a pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| ⊢ (1..^3) = {1, 2} | ||
| Theorem | fzo0to2pr 13647 | A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| ⊢ (0..^2) = {0, 1} | ||
| Theorem | fz01pr 13648 | An integer range between 0 and 1 is a pair. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (0...1) = {0, 1} | ||
| Theorem | fzo0to3tp 13649 | A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017.) |
| ⊢ (0..^3) = {0, 1, 2} | ||
| Theorem | fzo0to42pr 13650 | A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
| ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) | ||
| Theorem | fzo1to4tp 13651 | A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021.) |
| ⊢ (1..^4) = {1, 2, 3} | ||
| Theorem | fzo0sn0fzo1 13652 | A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018.) |
| ⊢ (𝑁 ∈ ℕ → (0..^𝑁) = ({0} ∪ (1..^𝑁))) | ||
| Theorem | elfzo0l 13653 | A member of a half-open range of nonnegative integers is either 0 or a member of the corresponding half-open range of positive integers. (Contributed by AV, 5-Feb-2021.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 = 0 ∨ 𝐾 ∈ (1..^𝑁))) | ||
| Theorem | fzoend 13654 | The endpoint of a half-open integer range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (𝐴..^𝐵) → (𝐵 − 1) ∈ (𝐴..^𝐵)) | ||
| Theorem | fzo0end 13655 | The endpoint of a zero-based half-open range. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐵 ∈ ℕ → (𝐵 − 1) ∈ (0..^𝐵)) | ||
| Theorem | ssfzo12 13656 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
| Theorem | ssfzoulel 13657 | If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ≤ 𝐴 ∨ 𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵 ≤ 𝐴))) | ||
| Theorem | ssfzo12bi 13658 | Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐿 ≤ 𝑁))) | ||
| Theorem | fzoopth 13659 | A half-open integer range can represent an ordered pair, analogous to fzopth 13458. (Contributed by Alexander van der Vekens, 1-Jul-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽 ∧ 𝑁 = 𝐾))) | ||
| Theorem | ubmelm1fzo 13660 | The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) | ||
| Theorem | fzofzp1 13661 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | ||
| Theorem | fzofzp1b 13662 | If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) | ||
| Theorem | elfzom1b 13663 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (𝐾 − 1) ∈ (0..^(𝑁 − 1)))) | ||
| Theorem | elfzom1elp1fzo1 13664 | Membership of a nonnegative integer incremented by one in a half-open range of positive integers. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (1..^𝑁)) | ||
| Theorem | elfzo1elm1fzo0 13665 | Membership of a positive integer decremented by one in a half-open range of nonnegative integers. (Contributed by AV, 20-Mar-2021.) |
| ⊢ (𝐼 ∈ (1..^𝑁) → (𝐼 − 1) ∈ (0..^(𝑁 − 1))) | ||
| Theorem | elfzonelfzo 13666 | If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) | ||
| Theorem | elfzodif0 13667 | If an integer 𝑀 is in an open interval starting at 0, except 0, then (𝑀 − 1) is also in that interval. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑀 ∈ ((0..^𝑁) ∖ {0})) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑀 − 1) ∈ (0..^𝑁)) | ||
| Theorem | fzonfzoufzol 13668 | If an element of a half-open integer range is not in the upper part of the range, it is in the lower part of the range. (Contributed by Alexander van der Vekens, 29-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁 ∧ 𝐼 ∈ (0..^𝑁)) → (¬ 𝐼 ∈ ((𝑁 − 𝑀)..^𝑁) → 𝐼 ∈ (0..^(𝑁 − 𝑀)))) | ||
| Theorem | elfzomelpfzo 13669 | An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀 − 𝐿)..^(𝑁 − 𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁))) | ||
| Theorem | elfznelfzo 13670 | A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
| ⊢ ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)) | ||
| Theorem | elfznelfzob 13671 | A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
| ⊢ (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ (𝑀 = 0 ∨ 𝑀 = 𝐾))) | ||
| Theorem | peano2fzor 13672 | A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾 + 1) ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzosplitsn 13673 | Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | fzosplitpr 13674 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^(𝐵 + 2)) = ((𝐴..^𝐵) ∪ {𝐵, (𝐵 + 1)})) | ||
| Theorem | fzosplitprm1 13675 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵})) | ||
| Theorem | fzosplitsni 13676 | Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^(𝐵 + 1)) ↔ (𝐶 ∈ (𝐴..^𝐵) ∨ 𝐶 = 𝐵))) | ||
| Theorem | fzisfzounsn 13677 | A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴...𝐵) = ((𝐴..^𝐵) ∪ {𝐵})) | ||
| Theorem | elfzr 13678 | A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀..^𝑁) ∨ 𝐾 = 𝑁)) | ||
| Theorem | elfzlmr 13679 | A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)..^𝑁) ∨ 𝐾 = 𝑁)) | ||
| Theorem | elfz0lmr 13680 | A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝐾 = 0 ∨ 𝐾 ∈ (1..^𝑁) ∨ 𝐾 = 𝑁)) | ||
| Theorem | fzone1 13681 | Elementhood in a half-open interval, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
| ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ((𝑀 + 1)..^𝑁)) | ||
| Theorem | fzom1ne1 13682 | Elementhood in a half-open interval, except the lower bound, shifted by one. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
| ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝐾 ≠ 𝑀) → (𝐾 − 1) ∈ (𝑀..^(𝑁 − 1))) | ||
| Theorem | fzostep1 13683 | Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) | ||
| Theorem | fzoshftral 13684* | Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral 13512. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀..^𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)..^(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
| Theorem | fzind2 13685* | Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 12568 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
| ⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜓) & ⊢ (𝑦 ∈ (𝑀..^𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝜏) | ||
| Theorem | fvinim0ffz 13686 | The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
| ⊢ ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹‘𝐾) ∉ (𝐹 “ (1..^𝐾))))) | ||
| Theorem | injresinjlem 13687 | Lemma for injresinj 13688. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.) |
| ⊢ (¬ 𝑌 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹‘𝐾) → ((𝐹:(0...𝐾)⟶𝑉 ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑋 ∈ (0...𝐾) ∧ 𝑌 ∈ (0...𝐾)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)))))) | ||
| Theorem | injresinj 13688 | A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.) |
| ⊢ (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun ◡(𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹‘𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun ◡𝐹))) | ||
| Theorem | subfzo0 13689 | The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼 − 𝐽) ∧ (𝐼 − 𝐽) < 𝑁)) | ||
| Theorem | fvf1tp 13690 | Values of a one-to-one function between two sets with three elements. Actually, such a function is a bijection. (Contributed by AV, 23-Jul-2025.) |
| ⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) | ||
| Syntax | cfl 13691 | Extend class notation with floor (greatest integer) function. |
| class ⌊ | ||
| Syntax | cceil 13692 | Extend class notation to include the ceiling function. |
| class ⌈ | ||
| Definition | df-fl 13693* |
Define the floor (greatest integer less than or equal to) function. See
flval 13695 for its value, fllelt 13698 for its basic property, and flcl 13696
for
its closure. For example, (⌊‘(3 / 2)) =
1 while
(⌊‘-(3 / 2)) = -2 (ex-fl 30422).
The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.) |
| ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) | ||
| Definition | df-ceil 13694 |
The ceiling (least integer greater than or equal to) function. Defined in
ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of
Mathematical Functions" , front introduction, "Common Notations
and
Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4.
See ceilval 13739 for its value, ceilge 13746 and ceilm1lt 13749 for its basic
properties, and ceilcl 13743 for its closure. For example,
(⌈‘(3 / 2)) = 2 while (⌈‘-(3 / 2)) = -1
(ex-ceil 30423).
The symbol ⌈ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.) |
| ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | ||
| Theorem | flval 13695* | Value of the floor (greatest integer) function. The floor of 𝐴 is the (unique) integer less than or equal to 𝐴 whose successor is strictly greater than 𝐴. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | ||
| Theorem | flcl 13696 | The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | reflcl 13697 | The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | ||
| Theorem | fllelt 13698 | A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
| ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | ||
| Theorem | flcld 13699 | The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (⌊‘𝐴) ∈ ℤ) | ||
| Theorem | flle 13700 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |