Home | Metamath
Proof Explorer Theorem List (p. 137 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29658) |
Hilbert Space Explorer
(29659-31181) |
Users' Mathboxes
(31182-46997) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elfzo1elm1fzo0 13601 | Membership of a positive integer decremented by one in a half-open range of nonnegative integers. (Contributed by AV, 20-Mar-2021.) |
โข (๐ผ โ (1..^๐) โ (๐ผ โ 1) โ (0..^(๐ โ 1))) | ||
Theorem | elfzonelfzo 13602 | If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
โข (๐ โ โค โ ((๐พ โ (๐..^๐ ) โง ยฌ ๐พ โ (๐..^๐)) โ ๐พ โ (๐..^๐ ))) | ||
Theorem | fzonfzoufzol 13603 | If an element of a half-open integer range is not in the upper part of the range, it is in the lower part of the range. (Contributed by Alexander van der Vekens, 29-Oct-2018.) |
โข ((๐ โ โค โง ๐ < ๐ โง ๐ผ โ (0..^๐)) โ (ยฌ ๐ผ โ ((๐ โ ๐)..^๐) โ ๐ผ โ (0..^(๐ โ ๐)))) | ||
Theorem | elfzomelpfzo 13604 | An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
โข (((๐ โ โค โง ๐ โ โค) โง (๐พ โ โค โง ๐ฟ โ โค)) โ (๐พ โ ((๐ โ ๐ฟ)..^(๐ โ ๐ฟ)) โ (๐พ + ๐ฟ) โ (๐..^๐))) | ||
Theorem | elfznelfzo 13605 | A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
โข ((๐ โ (0...๐พ) โง ยฌ ๐ โ (1..^๐พ)) โ (๐ = 0 โจ ๐ = ๐พ)) | ||
Theorem | elfznelfzob 13606 | A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018.) (Revised by Thierry Arnoux, 22-Dec-2021.) |
โข (๐ โ (0...๐พ) โ (ยฌ ๐ โ (1..^๐พ) โ (๐ = 0 โจ ๐ = ๐พ))) | ||
Theorem | peano2fzor 13607 | A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015.) |
โข ((๐พ โ (โคโฅโ๐) โง (๐พ + 1) โ (๐..^๐)) โ ๐พ โ (๐..^๐)) | ||
Theorem | fzosplitsn 13608 | Extending a half-open range by a singleton on the end. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
โข (๐ต โ (โคโฅโ๐ด) โ (๐ด..^(๐ต + 1)) = ((๐ด..^๐ต) โช {๐ต})) | ||
Theorem | fzosplitpr 13609 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
โข (๐ต โ (โคโฅโ๐ด) โ (๐ด..^(๐ต + 2)) = ((๐ด..^๐ต) โช {๐ต, (๐ต + 1)})) | ||
Theorem | fzosplitprm1 13610 | Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 25-Jun-2022.) |
โข ((๐ด โ โค โง ๐ต โ โค โง ๐ด < ๐ต) โ (๐ด..^(๐ต + 1)) = ((๐ด..^(๐ต โ 1)) โช {(๐ต โ 1), ๐ต})) | ||
Theorem | fzosplitsni 13611 | Membership in a half-open range extended by a singleton. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
โข (๐ต โ (โคโฅโ๐ด) โ (๐ถ โ (๐ด..^(๐ต + 1)) โ (๐ถ โ (๐ด..^๐ต) โจ ๐ถ = ๐ต))) | ||
Theorem | fzisfzounsn 13612 | A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
โข (๐ต โ (โคโฅโ๐ด) โ (๐ด...๐ต) = ((๐ด..^๐ต) โช {๐ต})) | ||
Theorem | elfzr 13613 | A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021.) |
โข (๐พ โ (๐...๐) โ (๐พ โ (๐..^๐) โจ ๐พ = ๐)) | ||
Theorem | elfzlmr 13614 | A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021.) |
โข (๐พ โ (๐...๐) โ (๐พ = ๐ โจ ๐พ โ ((๐ + 1)..^๐) โจ ๐พ = ๐)) | ||
Theorem | elfz0lmr 13615 | A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021.) |
โข (๐พ โ (0...๐) โ (๐พ = 0 โจ ๐พ โ (1..^๐) โจ ๐พ = ๐)) | ||
Theorem | fzostep1 13616 | Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
โข (๐ด โ (๐ต..^๐ถ) โ ((๐ด + 1) โ (๐ต..^๐ถ) โจ (๐ด + 1) = ๐ถ)) | ||
Theorem | fzoshftral 13617* | Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral 13457. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
โข ((๐ โ โค โง ๐ โ โค โง ๐พ โ โค) โ (โ๐ โ (๐..^๐)๐ โ โ๐ โ ((๐ + ๐พ)..^(๐ + ๐พ))[(๐ โ ๐พ) / ๐]๐)) | ||
Theorem | fzind2 13618* | Induction on the integers from ๐ to ๐ inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 12531 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.) |
โข (๐ฅ = ๐ โ (๐ โ ๐)) & โข (๐ฅ = ๐ฆ โ (๐ โ ๐)) & โข (๐ฅ = (๐ฆ + 1) โ (๐ โ ๐)) & โข (๐ฅ = ๐พ โ (๐ โ ๐)) & โข (๐ โ (โคโฅโ๐) โ ๐) & โข (๐ฆ โ (๐..^๐) โ (๐ โ ๐)) โ โข (๐พ โ (๐...๐) โ ๐) | ||
Theorem | fvinim0ffz 13619 | The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.) |
โข ((๐น:(0...๐พ)โถ๐ โง ๐พ โ โ0) โ (((๐น โ {0, ๐พ}) โฉ (๐น โ (1..^๐พ))) = โ โ ((๐นโ0) โ (๐น โ (1..^๐พ)) โง (๐นโ๐พ) โ (๐น โ (1..^๐พ))))) | ||
Theorem | injresinjlem 13620 | Lemma for injresinj 13621. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Proof shortened by AV, 14-Feb-2021.) (Revised by Thierry Arnoux, 23-Dec-2021.) |
โข (ยฌ ๐ โ (1..^๐พ) โ ((๐นโ0) โ (๐นโ๐พ) โ ((๐น:(0...๐พ)โถ๐ โง ๐พ โ โ0) โ (((๐น โ {0, ๐พ}) โฉ (๐น โ (1..^๐พ))) = โ โ ((๐ โ (0...๐พ) โง ๐ โ (0...๐พ)) โ ((๐นโ๐) = (๐นโ๐) โ ๐ = ๐)))))) | ||
Theorem | injresinj 13621 | A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.) |
โข (๐พ โ โ0 โ ((๐น:(0...๐พ)โถ๐ โง Fun โก(๐น โพ (1..^๐พ)) โง (๐นโ0) โ (๐นโ๐พ)) โ (((๐น โ {0, ๐พ}) โฉ (๐น โ (1..^๐พ))) = โ โ Fun โก๐น))) | ||
Theorem | subfzo0 13622 | The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.) |
โข ((๐ผ โ (0..^๐) โง ๐ฝ โ (0..^๐)) โ (-๐ < (๐ผ โ ๐ฝ) โง (๐ผ โ ๐ฝ) < ๐)) | ||
Syntax | cfl 13623 | Extend class notation with floor (greatest integer) function. |
class โ | ||
Syntax | cceil 13624 | Extend class notation to include the ceiling function. |
class โ | ||
Definition | df-fl 13625* |
Define the floor (greatest integer less than or equal to) function. See
flval 13627 for its value, fllelt 13630 for its basic property, and flcl 13628
for
its closure. For example, (โโ(3 / 2)) =
1 while
(โโ-(3 / 2)) = -2 (ex-fl 29189).
The term "floor" was coined by Ken Iverson. He also invented a mathematical notation for floor, consisting of an L-shaped left bracket and its reflection as a right bracket. In APL, the left-bracket alone is used, and we borrow this idea. (Thanks to Paul Chapman for this information.) (Contributed by NM, 14-Nov-2004.) |
โข โ = (๐ฅ โ โ โฆ (โฉ๐ฆ โ โค (๐ฆ โค ๐ฅ โง ๐ฅ < (๐ฆ + 1)))) | ||
Definition | df-ceil 13626 |
The ceiling (least integer greater than or equal to) function. Defined in
ISO 80000-2:2009(E) operation 2-9.18 and the "NIST Digital Library of
Mathematical Functions" , front introduction, "Common Notations
and
Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4.
See ceilval 13671 for its value, ceilge 13678 and ceilm1lt 13681 for its basic
properties, and ceilcl 13675 for its closure. For example,
(โโ(3 / 2)) = 2 while (โโ-(3 / 2)) = -1
(ex-ceil 29190).
The symbol โ is inspired by the gamma shaped left bracket of the usual notation. (Contributed by David A. Wheeler, 19-May-2015.) |
โข โ = (๐ฅ โ โ โฆ -(โโ-๐ฅ)) | ||
Theorem | flval 13627* | Value of the floor (greatest integer) function. The floor of ๐ด is the (unique) integer less than or equal to ๐ด whose successor is strictly greater than ๐ด. (Contributed by NM, 14-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
โข (๐ด โ โ โ (โโ๐ด) = (โฉ๐ฅ โ โค (๐ฅ โค ๐ด โง ๐ด < (๐ฅ + 1)))) | ||
Theorem | flcl 13628 | The floor (greatest integer) function is an integer (closure law). (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
โข (๐ด โ โ โ (โโ๐ด) โ โค) | ||
Theorem | reflcl 13629 | The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008.) |
โข (๐ด โ โ โ (โโ๐ด) โ โ) | ||
Theorem | fllelt 13630 | A basic property of the floor (greatest integer) function. (Contributed by NM, 15-Nov-2004.) (Revised by Mario Carneiro, 2-Nov-2013.) |
โข (๐ด โ โ โ ((โโ๐ด) โค ๐ด โง ๐ด < ((โโ๐ด) + 1))) | ||
Theorem | flcld 13631 | The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016.) |
โข (๐ โ ๐ด โ โ) โ โข (๐ โ (โโ๐ด) โ โค) | ||
Theorem | flle 13632 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
โข (๐ด โ โ โ (โโ๐ด) โค ๐ด) | ||
Theorem | flltp1 13633 | A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
โข (๐ด โ โ โ ๐ด < ((โโ๐ด) + 1)) | ||
Theorem | fllep1 13634 | A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016.) |
โข (๐ด โ โ โ ๐ด โค ((โโ๐ด) + 1)) | ||
Theorem | fraclt1 13635 | The fractional part of a real number is less than one. (Contributed by NM, 15-Jul-2008.) |
โข (๐ด โ โ โ (๐ด โ (โโ๐ด)) < 1) | ||
Theorem | fracle1 13636 | The fractional part of a real number is less than or equal to one. (Contributed by Mario Carneiro, 21-May-2016.) |
โข (๐ด โ โ โ (๐ด โ (โโ๐ด)) โค 1) | ||
Theorem | fracge0 13637 | The fractional part of a real number is nonnegative. (Contributed by NM, 17-Jul-2008.) |
โข (๐ด โ โ โ 0 โค (๐ด โ (โโ๐ด))) | ||
Theorem | flge 13638 | The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
โข ((๐ด โ โ โง ๐ต โ โค) โ (๐ต โค ๐ด โ ๐ต โค (โโ๐ด))) | ||
Theorem | fllt 13639 | The floor function value is less than the next integer. (Contributed by NM, 24-Feb-2005.) |
โข ((๐ด โ โ โง ๐ต โ โค) โ (๐ด < ๐ต โ (โโ๐ด) < ๐ต)) | ||
Theorem | flflp1 13640 | Move floor function between strict and non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.) |
โข ((๐ด โ โ โง ๐ต โ โ) โ ((โโ๐ด) โค ๐ต โ ๐ด < ((โโ๐ต) + 1))) | ||
Theorem | flid 13641 | An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
โข (๐ด โ โค โ (โโ๐ด) = ๐ด) | ||
Theorem | flidm 13642 | The floor function is idempotent. (Contributed by NM, 17-Aug-2008.) |
โข (๐ด โ โ โ (โโ(โโ๐ด)) = (โโ๐ด)) | ||
Theorem | flidz 13643 | A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008.) |
โข (๐ด โ โ โ ((โโ๐ด) = ๐ด โ ๐ด โ โค)) | ||
Theorem | flltnz 13644 | The floor of a non-integer real is less than it. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
โข ((๐ด โ โ โง ยฌ ๐ด โ โค) โ (โโ๐ด) < ๐ด) | ||
Theorem | flwordi 13645 | Ordering relation for the floor function. (Contributed by NM, 31-Dec-2005.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด โค ๐ต) โ (โโ๐ด) โค (โโ๐ต)) | ||
Theorem | flword2 13646 | Ordering relation for the floor function. (Contributed by Mario Carneiro, 7-Jun-2016.) |
โข ((๐ด โ โ โง ๐ต โ โ โง ๐ด โค ๐ต) โ (โโ๐ต) โ (โคโฅโ(โโ๐ด))) | ||
Theorem | flval2 13647* | An alternate way to define the floor function. (Contributed by NM, 16-Nov-2004.) |
โข (๐ด โ โ โ (โโ๐ด) = (โฉ๐ฅ โ โค (๐ฅ โค ๐ด โง โ๐ฆ โ โค (๐ฆ โค ๐ด โ ๐ฆ โค ๐ฅ)))) | ||
Theorem | flval3 13648* | An alternate way to define the floor function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.) |
โข (๐ด โ โ โ (โโ๐ด) = sup({๐ฅ โ โค โฃ ๐ฅ โค ๐ด}, โ, < )) | ||
Theorem | flbi 13649 | A condition equivalent to floor. (Contributed by NM, 11-Mar-2005.) (Revised by Mario Carneiro, 2-Nov-2013.) |
โข ((๐ด โ โ โง ๐ต โ โค) โ ((โโ๐ด) = ๐ต โ (๐ต โค ๐ด โง ๐ด < (๐ต + 1)))) | ||
Theorem | flbi2 13650 | A condition equivalent to floor. (Contributed by NM, 15-Aug-2008.) |
โข ((๐ โ โค โง ๐น โ โ) โ ((โโ(๐ + ๐น)) = ๐ โ (0 โค ๐น โง ๐น < 1))) | ||
Theorem | adddivflid 13651 | The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.) |
โข ((๐ด โ โค โง ๐ต โ โ0 โง ๐ถ โ โ) โ (๐ต < ๐ถ โ (โโ(๐ด + (๐ต / ๐ถ))) = ๐ด)) | ||
Theorem | ico01fl0 13652 | The floor of a real number in [0, 1) is 0. Remark: may shorten the proof of modid 13729 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.) |
โข (๐ด โ (0[,)1) โ (โโ๐ด) = 0) | ||
Theorem | flge0nn0 13653 | The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by NM, 26-Apr-2005.) |
โข ((๐ด โ โ โง 0 โค ๐ด) โ (โโ๐ด) โ โ0) | ||
Theorem | flge1nn 13654 | The floor of a number greater than or equal to 1 is a positive integer. (Contributed by NM, 26-Apr-2005.) |
โข ((๐ด โ โ โง 1 โค ๐ด) โ (โโ๐ด) โ โ) | ||
Theorem | fldivnn0 13655 | The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
โข ((๐พ โ โ0 โง ๐ฟ โ โ) โ (โโ(๐พ / ๐ฟ)) โ โ0) | ||
Theorem | refldivcl 13656 | The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
โข ((๐พ โ โ โง ๐ฟ โ โ+) โ (โโ(๐พ / ๐ฟ)) โ โ) | ||
Theorem | divfl0 13657 | The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.) |
โข ((๐ด โ โ0 โง ๐ต โ โ) โ (๐ด < ๐ต โ (โโ(๐ด / ๐ต)) = 0)) | ||
Theorem | fladdz 13658 | An integer can be moved in and out of the floor of a sum. (Contributed by NM, 27-Apr-2005.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
โข ((๐ด โ โ โง ๐ โ โค) โ (โโ(๐ด + ๐)) = ((โโ๐ด) + ๐)) | ||
Theorem | flzadd 13659 | An integer can be moved in and out of the floor of a sum. (Contributed by NM, 2-Jan-2009.) |
โข ((๐ โ โค โง ๐ด โ โ) โ (โโ(๐ + ๐ด)) = (๐ + (โโ๐ด))) | ||
Theorem | flmulnn0 13660 | Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
โข ((๐ โ โ0 โง ๐ด โ โ) โ (๐ ยท (โโ๐ด)) โค (โโ(๐ ยท ๐ด))) | ||
Theorem | btwnzge0 13661 | A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (For the first half see rebtwnz 12800.) (Contributed by NM, 12-Mar-2005.) |
โข (((๐ด โ โ โง ๐ โ โค) โง (๐ โค ๐ด โง ๐ด < (๐ + 1))) โ (0 โค ๐ด โ 0 โค ๐)) | ||
Theorem | 2tnp1ge0ge0 13662 | Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
โข (๐ โ โค โ (0 โค ((2 ยท ๐) + 1) โ 0 โค ๐)) | ||
Theorem | flhalf 13663 | Ordering relation for the floor of half of an integer. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
โข (๐ โ โค โ ๐ โค (2 ยท (โโ((๐ + 1) / 2)))) | ||
Theorem | fldivle 13664 | The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
โข ((๐พ โ โ โง ๐ฟ โ โ+) โ (โโ(๐พ / ๐ฟ)) โค (๐พ / ๐ฟ)) | ||
Theorem | fldivnn0le 13665 | The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
โข ((๐พ โ โ0 โง ๐ฟ โ โ) โ (โโ(๐พ / ๐ฟ)) โค (๐พ / ๐ฟ)) | ||
Theorem | flltdivnn0lt 13666 | The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
โข ((๐พ โ โ0 โง ๐ โ โ0 โง ๐ฟ โ โ) โ (๐พ < ๐ โ (โโ(๐พ / ๐ฟ)) < (๐ / ๐ฟ))) | ||
Theorem | ltdifltdiv 13667 | If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
โข ((๐ด โ โ โง ๐ต โ โ+ โง ๐ถ โ โ) โ (๐ด < (๐ถ โ ๐ต) โ ((โโ(๐ด / ๐ต)) + 1) < (๐ถ / ๐ต))) | ||
Theorem | fldiv4p1lem1div2 13668 | The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.) |
โข ((๐ = 3 โจ ๐ โ (โคโฅโ5)) โ ((โโ(๐ / 4)) + 1) โค ((๐ โ 1) / 2)) | ||
Theorem | fldiv4lem1div2uz2 13669 | The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
โข (๐ โ (โคโฅโ2) โ (โโ(๐ / 4)) โค ((๐ โ 1) / 2)) | ||
Theorem | fldiv4lem1div2 13670 | The floor of a positive integer divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 9-Jul-2021.) |
โข (๐ โ โ โ (โโ(๐ / 4)) โค ((๐ โ 1) / 2)) | ||
Theorem | ceilval 13671 | The value of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
โข (๐ด โ โ โ (โโ๐ด) = -(โโ-๐ด)) | ||
Theorem | dfceil2 13672* | Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
โข โ = (๐ฅ โ โ โฆ (โฉ๐ฆ โ โค (๐ฅ โค ๐ฆ โง ๐ฆ < (๐ฅ + 1)))) | ||
Theorem | ceilval2 13673* | The value of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.) |
โข (๐ด โ โ โ (โโ๐ด) = (โฉ๐ฆ โ โค (๐ด โค ๐ฆ โง ๐ฆ < (๐ด + 1)))) | ||
Theorem | ceicl 13674 | The ceiling function returns an integer (closure law). (Contributed by Jeff Hankins, 10-Jun-2007.) |
โข (๐ด โ โ โ -(โโ-๐ด) โ โค) | ||
Theorem | ceilcl 13675 | Closure of the ceiling function. (Contributed by David A. Wheeler, 19-May-2015.) |
โข (๐ด โ โ โ (โโ๐ด) โ โค) | ||
Theorem | ceilcld 13676 | Closure of the ceiling function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
โข (๐ โ ๐ด โ โ) โ โข (๐ โ (โโ๐ด) โ โค) | ||
Theorem | ceige 13677 | The ceiling of a real number is greater than or equal to that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
โข (๐ด โ โ โ ๐ด โค -(โโ-๐ด)) | ||
Theorem | ceilge 13678 | The ceiling of a real number is greater than or equal to that number. (Contributed by AV, 30-Nov-2018.) |
โข (๐ด โ โ โ ๐ด โค (โโ๐ด)) | ||
Theorem | ceilged 13679 | The ceiling of a real number is greater than or equal to that number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
โข (๐ โ ๐ด โ โ) โ โข (๐ โ ๐ด โค (โโ๐ด)) | ||
Theorem | ceim1l 13680 | One less than the ceiling of a real number is strictly less than that number. (Contributed by Jeff Hankins, 10-Jun-2007.) |
โข (๐ด โ โ โ (-(โโ-๐ด) โ 1) < ๐ด) | ||
Theorem | ceilm1lt 13681 | One less than the ceiling of a real number is strictly less than that number. (Contributed by AV, 30-Nov-2018.) |
โข (๐ด โ โ โ ((โโ๐ด) โ 1) < ๐ด) | ||
Theorem | ceile 13682 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007.) |
โข ((๐ด โ โ โง ๐ต โ โค โง ๐ด โค ๐ต) โ -(โโ-๐ด) โค ๐ต) | ||
Theorem | ceille 13683 | The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018.) |
โข ((๐ด โ โ โง ๐ต โ โค โง ๐ด โค ๐ต) โ (โโ๐ด) โค ๐ต) | ||
Theorem | ceilid 13684 | An integer is its own ceiling. (Contributed by AV, 30-Nov-2018.) |
โข (๐ด โ โค โ (โโ๐ด) = ๐ด) | ||
Theorem | ceilidz 13685 | A real number equals its ceiling iff it is an integer. (Contributed by AV, 30-Nov-2018.) |
โข (๐ด โ โ โ (๐ด โ โค โ (โโ๐ด) = ๐ด)) | ||
Theorem | flleceil 13686 | The floor of a real number is less than or equal to its ceiling. (Contributed by AV, 30-Nov-2018.) |
โข (๐ด โ โ โ (โโ๐ด) โค (โโ๐ด)) | ||
Theorem | fleqceilz 13687 | A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.) |
โข (๐ด โ โ โ (๐ด โ โค โ (โโ๐ด) = (โโ๐ด))) | ||
Theorem | quoremz 13688 | Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 16219. (Contributed by NM, 14-Aug-2008.) |
โข ๐ = (โโ(๐ด / ๐ต)) & โข ๐ = (๐ด โ (๐ต ยท ๐)) โ โข ((๐ด โ โค โง ๐ต โ โ) โ ((๐ โ โค โง ๐ โ โ0) โง (๐ < ๐ต โง ๐ด = ((๐ต ยท ๐) + ๐ )))) | ||
Theorem | quoremnn0 13689 | Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.) |
โข ๐ = (โโ(๐ด / ๐ต)) & โข ๐ = (๐ด โ (๐ต ยท ๐)) โ โข ((๐ด โ โ0 โง ๐ต โ โ) โ ((๐ โ โ0 โง ๐ โ โ0) โง (๐ < ๐ต โง ๐ด = ((๐ต ยท ๐) + ๐ )))) | ||
Theorem | quoremnn0ALT 13690 | Alternate proof of quoremnn0 13689 not using quoremz 13688. TODO - Keep either quoremnn0ALT 13690 (if we don't keep quoremz 13688) or quoremnn0 13689? (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
โข ๐ = (โโ(๐ด / ๐ต)) & โข ๐ = (๐ด โ (๐ต ยท ๐)) โ โข ((๐ด โ โ0 โง ๐ต โ โ) โ ((๐ โ โ0 โง ๐ โ โ0) โง (๐ < ๐ต โง ๐ด = ((๐ต ยท ๐) + ๐ )))) | ||
Theorem | intfrac2 13691 | Decompose a real into integer and fractional parts. TODO - should we replace this with intfrac 13719? (Contributed by NM, 16-Aug-2008.) |
โข ๐ = (โโ๐ด) & โข ๐น = (๐ด โ ๐) โ โข (๐ด โ โ โ (0 โค ๐น โง ๐น < 1 โง ๐ด = (๐ + ๐น))) | ||
Theorem | intfracq 13692 | Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intfrac2 13691. (Contributed by NM, 16-Aug-2008.) |
โข ๐ = (โโ(๐ / ๐)) & โข ๐น = ((๐ / ๐) โ ๐) โ โข ((๐ โ โค โง ๐ โ โ) โ (0 โค ๐น โง ๐น โค ((๐ โ 1) / ๐) โง (๐ / ๐) = (๐ + ๐น))) | ||
Theorem | fldiv 13693 | Cancellation of the embedded floor of a real divided by an integer. (Contributed by NM, 16-Aug-2008.) |
โข ((๐ด โ โ โง ๐ โ โ) โ (โโ((โโ๐ด) / ๐)) = (โโ(๐ด / ๐))) | ||
Theorem | fldiv2 13694 | Cancellation of an embedded floor of a ratio. Generalization of Equation 2.4 in [CormenLeisersonRivest] p. 33 (where ๐ด must be an integer). (Contributed by NM, 9-Nov-2008.) |
โข ((๐ด โ โ โง ๐ โ โ โง ๐ โ โ) โ (โโ((โโ(๐ด / ๐)) / ๐)) = (โโ(๐ด / (๐ ยท ๐)))) | ||
Theorem | fznnfl 13695 | Finite set of sequential integers starting at 1 and ending at a real number. (Contributed by Mario Carneiro, 3-May-2016.) |
โข (๐ โ โ โ (๐พ โ (1...(โโ๐)) โ (๐พ โ โ โง ๐พ โค ๐))) | ||
Theorem | uzsup 13696 | An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
โข ๐ = (โคโฅโ๐) โ โข (๐ โ โค โ sup(๐, โ*, < ) = +โ) | ||
Theorem | ioopnfsup 13697 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
โข ((๐ด โ โ* โง ๐ด โ +โ) โ sup((๐ด(,)+โ), โ*, < ) = +โ) | ||
Theorem | icopnfsup 13698 | An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
โข ((๐ด โ โ* โง ๐ด โ +โ) โ sup((๐ด[,)+โ), โ*, < ) = +โ) | ||
Theorem | rpsup 13699 | The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
โข sup(โ+, โ*, < ) = +โ | ||
Theorem | resup 13700 | The real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
โข sup(โ, โ*, < ) = +โ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |