![]() |
Metamath
Proof Explorer Theorem List (p. 137 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fzssuz 13601 | A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) | ||
Theorem | fzsn 13602 | A finite interval of integers with one element. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | ||
Theorem | fzssp1 13603 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑀...𝑁) ⊆ (𝑀...(𝑁 + 1)) | ||
Theorem | fzssnn 13604 | Finite sets of sequential integers starting from a natural are a subset of the positive integers. (Contributed by Thierry Arnoux, 4-Aug-2017.) |
⊢ (𝑀 ∈ ℕ → (𝑀...𝑁) ⊆ ℕ) | ||
Theorem | ssfzunsnext 13605 | A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.) |
⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼 ≤ 𝑀, 𝐼, 𝑀)...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | ||
Theorem | ssfzunsn 13606 | A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 8-Jun-2021.) (Proof shortened by AV, 13-Nov-2021.) |
⊢ ((𝑆 ⊆ (𝑀...𝑁) ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (ℤ≥‘𝑀)) → (𝑆 ∪ {𝐼}) ⊆ (𝑀...if(𝐼 ≤ 𝑁, 𝑁, 𝐼))) | ||
Theorem | fzsuc 13607 | Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
Theorem | fzpred 13608 | Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) | ||
Theorem | fzpreddisj 13609 | A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) | ||
Theorem | elfzp1 13610 | Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...(𝑁 + 1)) ↔ (𝐾 ∈ (𝑀...𝑁) ∨ 𝐾 = (𝑁 + 1)))) | ||
Theorem | fzp1ss 13611 | Subset relationship for finite sets of sequential integers. (Contributed by NM, 26-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | ||
Theorem | fzelp1 13612 | Membership in a set of sequential integers with an appended element. (Contributed by NM, 7-Dec-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (𝑀...(𝑁 + 1))) | ||
Theorem | fzp1elp1 13613 | Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 + 1) ∈ (𝑀...(𝑁 + 1))) | ||
Theorem | fznatpl1 13614 | Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | ||
Theorem | fzpr 13615 | A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | ||
Theorem | fztp 13616 | A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.) |
⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)}) | ||
Theorem | fz12pr 13617 | An integer range between 1 and 2 is a pair. (Contributed by AV, 11-Jan-2023.) |
⊢ (1...2) = {1, 2} | ||
Theorem | fzsuc2 13618 | Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) | ||
Theorem | fzp1disj 13619 | (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ | ||
Theorem | fzdifsuc 13620 | Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) ∖ {(𝑁 + 1)})) | ||
Theorem | fzprval 13621* | Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) | ||
Theorem | fztpval 13622* | Two ways of defining the first three values of a sequence on ℕ. (Contributed by NM, 13-Sep-2011.) |
⊢ (∀𝑥 ∈ (1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) | ||
Theorem | fzrev 13623 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)) ↔ (𝐽 − 𝐾) ∈ (𝑀...𝑁))) | ||
Theorem | fzrev2 13624 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀)))) | ||
Theorem | fzrev2i 13625 | Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐽 − 𝐾) ∈ ((𝐽 − 𝑁)...(𝐽 − 𝑀))) | ||
Theorem | fzrev3 13626 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
⊢ (𝐾 ∈ ℤ → (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁))) | ||
Theorem | fzrev3i 13627 | The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → ((𝑀 + 𝑁) − 𝐾) ∈ (𝑀...𝑁)) | ||
Theorem | fznn 13628 | Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfz1b 13629 | Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.) |
⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) | ||
Theorem | elfz1uz 13630 | Membership in a 1-based finite set of sequential integers with an upper integer. (Contributed by AV, 23-Jan-2022.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (1...𝑀)) | ||
Theorem | elfzm11 13631 | Membership in a finite set of sequential integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
Theorem | uzsplit 13632 | Express an upper integer set as the disjoint (see uzdisj 13633) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ≥‘𝑁))) | ||
Theorem | uzdisj 13633 | The first 𝑁 elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014.) |
⊢ ((𝑀...(𝑁 − 1)) ∩ (ℤ≥‘𝑁)) = ∅ | ||
Theorem | fseq1p1m1 13634 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
⊢ 𝐻 = {〈(𝑁 + 1), 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...𝑁))))) | ||
Theorem | fseq1m1p1 13635 | Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ 𝐻 = {〈𝑁, 𝐵〉} ⇒ ⊢ (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐺 = (𝐹 ∪ 𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺‘𝑁) = 𝐵 ∧ 𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))))) | ||
Theorem | fz1sbc 13636* | Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.) |
⊢ (𝑁 ∈ ℤ → (∀𝑘 ∈ (𝑁...𝑁)𝜑 ↔ [𝑁 / 𝑘]𝜑)) | ||
Theorem | elfzp1b 13637 | An integer is a member of a 0-based finite set of sequential integers iff its successor is a member of the corresponding 1-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...(𝑁 − 1)) ↔ (𝐾 + 1) ∈ (1...𝑁))) | ||
Theorem | elfzm1b 13638 | An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1...𝑁) ↔ (𝐾 − 1) ∈ (0...(𝑁 − 1)))) | ||
Theorem | elfzp12 13639 | Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)...𝑁)))) | ||
Theorem | fzne1 13640 | Elementhood in a finite set of sequential integers, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024.) |
⊢ ((𝐾 ∈ (𝑀...𝑁) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ((𝑀 + 1)...𝑁)) | ||
Theorem | fzdif1 13641 | Split the first element of a finite set of sequential integers. More generic than fzpred 13608. Analogous to fzdif2 32798. (Contributed by AV, 12-Sep-2025.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∖ {𝑀}) = ((𝑀 + 1)...𝑁)) | ||
Theorem | fz0dif1 13642 | Split the first element of a finite set of sequential nonnegative integers. (Contributed by AV, 12-Sep-2025.) |
⊢ (𝑁 ∈ ℕ0 → ((0...𝑁) ∖ {0}) = (1...𝑁)) | ||
Theorem | fzm1 13643 | Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) | ||
Theorem | fzneuz 13644 | No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → ¬ (𝑀...𝑁) = (ℤ≥‘𝐾)) | ||
Theorem | fznuz 13645 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 30-Jun-2013.) (Revised by Mario Carneiro, 24-Aug-2013.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → ¬ 𝐾 ∈ (ℤ≥‘(𝑁 + 1))) | ||
Theorem | uznfz 13646 | Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013.) |
⊢ (𝐾 ∈ (ℤ≥‘𝑁) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) | ||
Theorem | fzp1nel 13647 | One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) | ||
Theorem | fzrevral 13648* | Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
Theorem | fzrevral2 13649* | Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) | ||
Theorem | fzrevral3 13650* | Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[((𝑀 + 𝑁) − 𝑘) / 𝑗]𝜑)) | ||
Theorem | fzshftral 13651* | Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘 − 𝐾) / 𝑗]𝜑)) | ||
Theorem | ige2m1fz1 13652 | Membership of an integer greater than 1 decreased by 1 in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ (1...𝑁)) | ||
Theorem | ige2m1fz 13653 | Membership in a 0-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 18-Jun-2018.) (Proof shortened by Alexander van der Vekens, 15-Sep-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ (0...𝑁)) | ||
Finite intervals of nonnegative integers (or "finite sets of sequential nonnegative integers") are finite intervals of integers with 0 as lower bound: (0...𝑁), usually abbreviated by "fz0". | ||
Theorem | elfz2nn0 13654 | Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | ||
Theorem | fznn0 13655 | Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005.) |
⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁))) | ||
Theorem | elfznn0 13656 | A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0) | ||
Theorem | elfz3nn0 13657 | The upper bound of a nonempty finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | ||
Theorem | fz0ssnn0 13658 | Finite sets of sequential nonnegative integers starting with 0 are subsets of NN0. (Contributed by JJ, 1-Jun-2021.) |
⊢ (0...𝑁) ⊆ ℕ0 | ||
Theorem | fz1ssfz0 13659 | Subset relationship for finite sets of sequential integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (1...𝑁) ⊆ (0...𝑁) | ||
Theorem | 0elfz 13660 | 0 is an element of a finite set of sequential nonnegative integers with a nonnegative integer as upper bound. (Contributed by AV, 6-Apr-2018.) |
⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | ||
Theorem | nn0fz0 13661 | A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018.) |
⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | ||
Theorem | elfz0add 13662 | An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵)))) | ||
Theorem | fz0sn 13663 | An integer range from 0 to 0 is a singleton. (Contributed by AV, 18-Apr-2021.) |
⊢ (0...0) = {0} | ||
Theorem | fz0tp 13664 | An integer range from 0 to 2 is an unordered triple. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
⊢ (0...2) = {0, 1, 2} | ||
Theorem | fz0to3un2pr 13665 | An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
⊢ (0...3) = ({0, 1} ∪ {2, 3}) | ||
Theorem | fz0to4untppr 13666 | An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) (Proof shortened by AV, 7-Aug-2025.) |
⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | ||
Theorem | fz0to5un2tp 13667 | An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025.) |
⊢ (0...5) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
Theorem | elfz0ubfz0 13668 | An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿)) | ||
Theorem | elfz0fzfz0 13669 | A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁)) | ||
Theorem | fz0fzelfz0 13670 | If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
⊢ ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅)) | ||
Theorem | fznn0sub2 13671 | Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) | ||
Theorem | uzsubfz0 13672 | Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
⊢ ((𝐿 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − 𝐿) ∈ (0...𝑁)) | ||
Theorem | fz0fzdiffz0 13673 | The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.) |
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
Theorem | elfzmlbm 13674 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) | ||
Theorem | elfzmlbp 13675 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) |
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
Theorem | fzctr 13676 | Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | ||
Theorem | difelfzle 13677 | The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾 ≤ 𝑀) → (𝑀 − 𝐾) ∈ (0...𝑁)) | ||
Theorem | difelfznle 13678 | The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) | ||
Theorem | nn0split 13679 | Express the set of nonnegative integers as the disjoint (see nn0disj 13680) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
Theorem | nn0disj 13680 | The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ | ||
Theorem | fz0sn0fz1 13681 | A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021.) |
⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁))) | ||
Theorem | fvffz0 13682 | The function value of a function from a finite interval of nonnegative integers. (Contributed by AV, 13-Feb-2021.) |
⊢ (((𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁) ∧ 𝑃:(0...𝑁)⟶𝑉) → (𝑃‘𝐼) ∈ 𝑉) | ||
Theorem | 1fv 13683 | A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) | ||
Theorem | 4fvwrd4 13684* | The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
⊢ ((𝐿 ∈ (ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) | ||
Theorem | 2ffzeq 13685* | Two functions over 0-based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝐹:(0...𝑀)⟶𝑋 ∧ 𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
Theorem | preduz 13686 | The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → Pred( < , (ℤ≥‘𝑀), 𝑁) = (𝑀...(𝑁 − 1))) | ||
Theorem | prednn 13687 | The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
⊢ (𝑁 ∈ ℕ → Pred( < , ℕ, 𝑁) = (1...(𝑁 − 1))) | ||
Theorem | prednn0 13688 | The value of the predecessor class over ℕ0. (Contributed by Scott Fenton, 9-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1))) | ||
Theorem | predfz 13689 | Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) | ||
Syntax | cfzo 13690 | Syntax for half-open integer ranges. |
class ..^ | ||
Definition | df-fzo 13691* | Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 13544, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 13728 with fzsplit 13586, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | ||
Theorem | fzof 13692 | Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | ||
Theorem | elfzoel1 13693 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | ||
Theorem | elfzoel2 13694 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | ||
Theorem | elfzoelz 13695 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | ||
Theorem | fzoval 13696 | Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | ||
Theorem | elfzo 13697 | Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
Theorem | elfzo2 13698 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | ||
Theorem | elfzouz 13699 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
Theorem | nelfzo 13700 | An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020.) |
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |