| Metamath
Proof Explorer Theorem List (p. 137 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elfz0fzfz0 13601 | A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
| ⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁)) | ||
| Theorem | fz0fzelfz0 13602 | If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.) |
| ⊢ ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅)) | ||
| Theorem | fznn0sub2 13603 | Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | uzsubfz0 13604 | Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| ⊢ ((𝐿 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝐿)) → (𝑁 − 𝐿) ∈ (0...𝑁)) | ||
| Theorem | fz0fzdiffz0 13605 | The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
| Theorem | elfzmlbm 13606 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) | ||
| Theorem | elfzmlbp 13607 | Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (𝑀...(𝑀 + 𝑁))) → (𝐾 − 𝑀) ∈ (0...𝑁)) | ||
| Theorem | fzctr 13608 | Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) | ||
| Theorem | difelfzle 13609 | The difference of two integers from a finite set of sequential nonnegative integers is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ 𝐾 ≤ 𝑀) → (𝑀 − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | difelfznle 13610 | The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| ⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁) ∧ ¬ 𝐾 ≤ 𝑀) → ((𝑀 + 𝑁) − 𝐾) ∈ (0...𝑁)) | ||
| Theorem | nn0split 13611 | Express the set of nonnegative integers as the disjoint (see nn0disj 13612) union of the first 𝑁 + 1 values and the rest. (Contributed by AV, 8-Nov-2019.) |
| ⊢ (𝑁 ∈ ℕ0 → ℕ0 = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) | ||
| Theorem | nn0disj 13612 | The first 𝑁 + 1 elements of the set of nonnegative integers are distinct from any later members. (Contributed by AV, 8-Nov-2019.) |
| ⊢ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ | ||
| Theorem | fz0sn0fz1 13613 | A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (0...𝑁) = ({0} ∪ (1...𝑁))) | ||
| Theorem | fvffz0 13614 | The function value of a function from a finite interval of nonnegative integers. (Contributed by AV, 13-Feb-2021.) |
| ⊢ (((𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < 𝑁) ∧ 𝑃:(0...𝑁)⟶𝑉) → (𝑃‘𝐼) ∈ 𝑉) | ||
| Theorem | 1fv 13615 | A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017.) (Proof shortened by AV, 18-Apr-2021.) |
| ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑃 = {〈0, 𝑁〉}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁)) | ||
| Theorem | 4fvwrd4 13616* | The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| ⊢ ((𝐿 ∈ (ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) | ||
| Theorem | 2ffzeq 13617* | Two functions over 0-based finite set of sequential integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 30-Jun-2018.) |
| ⊢ ((𝑀 ∈ ℕ0 ∧ 𝐹:(0...𝑀)⟶𝑋 ∧ 𝑃:(0...𝑁)⟶𝑌) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0...𝑀)(𝐹‘𝑖) = (𝑃‘𝑖)))) | ||
| Theorem | preduz 13618 | The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → Pred( < , (ℤ≥‘𝑀), 𝑁) = (𝑀...(𝑁 − 1))) | ||
| Theorem | prednn 13619 | The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013.) |
| ⊢ (𝑁 ∈ ℕ → Pred( < , ℕ, 𝑁) = (1...(𝑁 − 1))) | ||
| Theorem | prednn0 13620 | The value of the predecessor class over ℕ0. (Contributed by Scott Fenton, 9-May-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → Pred( < , ℕ0, 𝑁) = (0...(𝑁 − 1))) | ||
| Theorem | predfz 13621 | Calculate the predecessor of an integer under a finite set of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
| ⊢ (𝐾 ∈ (𝑀...𝑁) → Pred( < , (𝑀...𝑁), 𝐾) = (𝑀...(𝐾 − 1))) | ||
| Syntax | cfzo 13622 | Syntax for half-open integer ranges. |
| class ..^ | ||
| Definition | df-fzo 13623* | Define a function generating sets of integers using a half-open range. Read (𝑀..^𝑁) as the integers from 𝑀 up to, but not including, 𝑁; contrast with (𝑀...𝑁) df-fz 13476, which includes 𝑁. Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit 13660 with fzsplit 13518, for instance. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | ||
| Theorem | fzof 13624 | Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | ||
| Theorem | elfzoel1 13625 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | ||
| Theorem | elfzoel2 13626 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | ||
| Theorem | elfzoelz 13627 | Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | ||
| Theorem | fzoval 13628 | Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | ||
| Theorem | elfzo 13629 | Membership in a half-open finite set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | ||
| Theorem | elfzo2 13630 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | ||
| Theorem | elfzouz 13631 | Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | ||
| Theorem | nelfzo 13632 | An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∉ (𝑀..^𝑁) ↔ (𝐾 < 𝑀 ∨ 𝑁 ≤ 𝐾))) | ||
| Theorem | fzolb 13633 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | ||
| Theorem | fzolb2 13634 | The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with 𝑀 < 𝑁. This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate 𝑀 ∈ (ℤ≥‘𝑁). (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 < 𝑁)) | ||
| Theorem | elfzole1 13635 | A member in a half-open integer interval is greater than or equal to the lower bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ≤ 𝐾) | ||
| Theorem | elfzolt2 13636 | A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) | ||
| Theorem | elfzolt3 13637 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 < 𝑁) | ||
| Theorem | elfzolt2b 13638 | A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝐾..^𝑁)) | ||
| Theorem | elfzolt3b 13639 | Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ (𝑀..^𝑁)) | ||
| Theorem | elfzop1le2 13640 | A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 + 1) ≤ 𝑁) | ||
| Theorem | fzonel 13641 | A half-open range does not contain its right endpoint. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ ¬ 𝐵 ∈ (𝐴..^𝐵) | ||
| Theorem | elfzouz2 13642 | The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | ||
| Theorem | elfzofz 13643 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀...𝑁)) | ||
| Theorem | elfzo3 13644 | Express membership in a half-open integer interval in terms of the "less than or equal to" and "less than" predicates on integers, resp. 𝐾 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐾, 𝐾 ∈ (𝐾..^𝑁) ↔ 𝐾 < 𝑁. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ (𝐾..^𝑁))) | ||
| Theorem | fzon0 13645 | A half-open integer interval is nonempty iff it contains its left endpoint. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((𝑀..^𝑁) ≠ ∅ ↔ 𝑀 ∈ (𝑀..^𝑁)) | ||
| Theorem | fzossfz 13646 | A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴..^𝐵) ⊆ (𝐴...𝐵) | ||
| Theorem | fzossz 13647 | A half-open integer interval is a set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝑀..^𝑁) ⊆ ℤ | ||
| Theorem | fzon 13648 | A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (𝑀..^𝑁) = ∅)) | ||
| Theorem | fzo0n 13649 | A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 𝑀 ↔ (0..^(𝑁 − 𝑀)) = ∅)) | ||
| Theorem | fzonlt0 13650 | A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ 𝑀 < 𝑁 ↔ (𝑀..^𝑁) = ∅)) | ||
| Theorem | fzo0 13651 | Half-open sets with equal endpoints are empty. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴..^𝐴) = ∅ | ||
| Theorem | fzonnsub 13652 | If 𝐾 < 𝑁 then 𝑁 − 𝐾 is a positive integer. (Contributed by Mario Carneiro, 29-Sep-2015.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝐾) ∈ ℕ) | ||
| Theorem | fzonnsub2 13653 | If 𝑀 < 𝑁 then 𝑁 − 𝑀 is a positive integer. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑁 − 𝑀) ∈ ℕ) | ||
| Theorem | fzoss1 13654 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzoss2 13655 | Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁)) | ||
| Theorem | fzossrbm1 13656 | Subset of a half-open range. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
| ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | ||
| Theorem | fzo0ss1 13657 | Subset relationship for half-open integer ranges with lower bounds 0 and 1. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| ⊢ (1..^𝑁) ⊆ (0..^𝑁) | ||
| Theorem | fzossnn0 13658 | A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) | ||
| Theorem | fzospliti 13659 | One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) | ||
| Theorem | fzosplit 13660 | Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) | ||
| Theorem | fzodisj 13661 | Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| ⊢ ((𝐴..^𝐵) ∩ (𝐵..^𝐶)) = ∅ | ||
| Theorem | fzouzsplit 13662 | Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (ℤ≥‘𝐴) = ((𝐴..^𝐵) ∪ (ℤ≥‘𝐵))) | ||
| Theorem | fzouzdisj 13663 | A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴..^𝐵) ∩ (ℤ≥‘𝐵)) = ∅ | ||
| Theorem | fzoun 13664 | A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶)))) | ||
| Theorem | fzodisjsn 13665 | A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021.) |
| ⊢ ((𝐴..^𝐵) ∩ {𝐵}) = ∅ | ||
| Theorem | prinfzo0 13666 | The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
| ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) | ||
| Theorem | lbfzo0 13667 | An integer is strictly greater than zero iff it is a member of ℕ. (Contributed by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (0 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ) | ||
| Theorem | elfzo0 13668 | Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) | ||
| Theorem | elfzo0z 13669 | Membership in a half-open range of nonnegative integers, generalization of elfzo0 13668 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | ||
| Theorem | nn0p1elfzo 13670 | A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ (𝐾 + 1) ≤ 𝑁) → 𝐾 ∈ (0..^𝑁)) | ||
| Theorem | elfzo0le 13671 | A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ≤ 𝐵) | ||
| Theorem | elfzolem1 13672 | A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) | ||
| Theorem | elfzo0subge1 13673 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → 1 ≤ (𝐵 − 𝐴)) | ||
| Theorem | elfzo0suble 13674 | The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is less than or equal to the upper bound. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| ⊢ (𝐴 ∈ (0..^𝐵) → (𝐵 − 𝐴) ≤ 𝐵) | ||
| Theorem | elfzonn0 13675 | A member of a half-open range of nonnegative integers is a nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℕ0) | ||
| Theorem | fzonmapblen 13676 | The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.) |
| ⊢ ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁 − 𝐴)) < 𝑁) | ||
| Theorem | fzofzim 13677 | If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀)) | ||
| Theorem | fz1fzo0m1 13678 | Translation of one between closed and open integer ranges. (Contributed by Thierry Arnoux, 28-Jul-2020.) |
| ⊢ (𝑀 ∈ (1...𝑁) → (𝑀 − 1) ∈ (0..^𝑁)) | ||
| Theorem | fzossnn 13679 | Half-open integer ranges starting with 1 are subsets of ℕ. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
| ⊢ (1..^𝑁) ⊆ ℕ | ||
| Theorem | elfzo1 13680 | Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝑁 ∈ (1..^𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀)) | ||
| Theorem | fzo1lb 13681 | 1 is the left endpoint of a half-open integer range based at 1 iff the right endpoint is an integer greater than 1. (Contributed by AV, 4-Sep-2025.) |
| ⊢ (1 ∈ (1..^𝑁) ↔ 𝑁 ∈ (ℤ≥‘2)) | ||
| Theorem | 1elfzo1 13682 | 1 is in a half-open range of positive integers iff its upper bound is greater than 1. (Contributed by AV, 22-Nov-2022.) |
| ⊢ (1 ∈ (1..^𝑀) ↔ (𝑀 ∈ ℕ ∧ 1 < 𝑀)) | ||
| Theorem | fzo1fzo0n0 13683 | An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.) |
| ⊢ (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0)) | ||
| Theorem | fzo0n0 13684 | A half-open integer range based at 0 is nonempty precisely if the upper bound is a positive integer. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| ⊢ ((0..^𝐴) ≠ ∅ ↔ 𝐴 ∈ ℕ) | ||
| Theorem | fzoaddel 13685 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) | ||
| Theorem | fzo0addel 13686 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐶 + 𝐷))) | ||
| Theorem | fzo0addelr 13687 | Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝐴 ∈ (0..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ (𝐷..^(𝐷 + 𝐶))) | ||
| Theorem | fzoaddel2 13688 | Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (0..^(𝐵 − 𝐶)) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 + 𝐶) ∈ (𝐶..^𝐵)) | ||
| Theorem | elfzoextl 13689 | Membership of an integer in an extended open range of integers, extension added to the left. (Contributed by AV, 31-Aug-2025.) Generalized by replacing the left border of the ranges. (Revised by SN, 18-Sep-2025.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝐼 + 𝑁))) | ||
| Theorem | elfzoext 13690 | Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020.) (Proof shortened by AV, 23-Sep-2025.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))) | ||
| Theorem | elincfzoext 13691 | Membership of an increased integer in a correspondingly extended half-open range of integers. (Contributed by AV, 30-Apr-2020.) |
| ⊢ ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → (𝑍 + 𝐼) ∈ (𝑀..^(𝑁 + 𝐼))) | ||
| Theorem | fzosubel 13692 | Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐷) ∈ ((𝐵 − 𝐷)..^(𝐶 − 𝐷))) | ||
| Theorem | fzosubel2 13693 | Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ ((𝐵 + 𝐶)..^(𝐵 + 𝐷)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (𝐶..^𝐷)) | ||
| Theorem | fzosubel3 13694 | Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| ⊢ ((𝐴 ∈ (𝐵..^(𝐵 + 𝐷)) ∧ 𝐷 ∈ ℤ) → (𝐴 − 𝐵) ∈ (0..^𝐷)) | ||
| Theorem | eluzgtdifelfzo 13695 | Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ≥‘𝐴) ∧ 𝐵 < 𝐴) → (𝑁 − 𝐴) ∈ (0..^(𝑁 − 𝐵)))) | ||
| Theorem | ige2m2fzo 13696 | Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1))) | ||
| Theorem | fzocatel 13697 | Translate membership in a half-open integer range. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| ⊢ (((𝐴 ∈ (0..^(𝐵 + 𝐶)) ∧ ¬ 𝐴 ∈ (0..^𝐵)) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 − 𝐵) ∈ (0..^𝐶)) | ||
| Theorem | ubmelfzo 13698 | If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) | ||
| Theorem | elfzodifsumelfzo 13699 | If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.) |
| ⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁 − 𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))) | ||
| Theorem | elfzom1elp1fzo 13700 | Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |