![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzof | Structured version Visualization version GIF version |
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzof | ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzssz 13500 | . . . 4 ⊢ (𝑚...(𝑛 − 1)) ⊆ ℤ | |
2 | ovex 7439 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ∈ V | |
3 | 2 | elpw 4606 | . . . 4 ⊢ ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
5 | 4 | rgen2w 3067 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
6 | df-fzo 13625 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
7 | 6 | fmpo 8051 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ) |
8 | 5, 7 | mpbi 229 | 1 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ∀wral 3062 ⊆ wss 3948 𝒫 cpw 4602 × cxp 5674 ⟶wf 6537 (class class class)co 7406 1c1 11108 − cmin 11441 ℤcz 12555 ...cfz 13481 ..^cfzo 13624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-neg 11444 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 |
This theorem is referenced by: elfzoel1 13627 elfzoel2 13628 elfzoelz 13629 fzoval 13630 fzofi 13936 |
Copyright terms: Public domain | W3C validator |