MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzof Structured version   Visualization version   GIF version

Theorem fzof 13617
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzof ..^:(ℤ × ℤ)⟶𝒫 ℤ

Proof of Theorem fzof
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 13487 . . . 4 (𝑚...(𝑛 − 1)) ⊆ ℤ
2 ovex 7420 . . . . 5 (𝑚...(𝑛 − 1)) ∈ V
32elpw 4567 . . . 4 ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ)
41, 3mpbir 231 . . 3 (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
54rgen2w 3049 . 2 𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
6 df-fzo 13616 . . 3 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
76fmpo 8047 . 2 (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ)
85, 7mpbi 230 1 ..^:(ℤ × ℤ)⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3044  wss 3914  𝒫 cpw 4563   × cxp 5636  wf 6507  (class class class)co 7387  1c1 11069  cmin 11405  cz 12529  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-neg 11408  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by:  elfzoel1  13618  elfzoel2  13619  elfzoelz  13620  fzoval  13621  fzofi  13939
  Copyright terms: Public domain W3C validator