| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzof | Structured version Visualization version GIF version | ||
| Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzof | ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzssz 13426 | . . . 4 ⊢ (𝑚...(𝑛 − 1)) ⊆ ℤ | |
| 2 | ovex 7379 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ∈ V | |
| 3 | 2 | elpw 4551 | . . . 4 ⊢ ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
| 5 | 4 | rgen2w 3052 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
| 6 | df-fzo 13555 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 7 | 6 | fmpo 8000 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ) |
| 8 | 5, 7 | mpbi 230 | 1 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 𝒫 cpw 4547 × cxp 5612 ⟶wf 6477 (class class class)co 7346 1c1 11007 − cmin 11344 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: elfzoel1 13557 elfzoel2 13558 elfzoelz 13559 fzoval 13560 fzofi 13881 |
| Copyright terms: Public domain | W3C validator |