Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzof | Structured version Visualization version GIF version |
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzof | ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzssz 13258 | . . . 4 ⊢ (𝑚...(𝑛 − 1)) ⊆ ℤ | |
2 | ovex 7308 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ∈ V | |
3 | 2 | elpw 4537 | . . . 4 ⊢ ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
5 | 4 | rgen2w 3077 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
6 | df-fzo 13383 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
7 | 6 | fmpo 7908 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ) |
8 | 5, 7 | mpbi 229 | 1 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 𝒫 cpw 4533 × cxp 5587 ⟶wf 6429 (class class class)co 7275 1c1 10872 − cmin 11205 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-neg 11208 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: elfzoel1 13385 elfzoel2 13386 elfzoelz 13387 fzoval 13388 fzofi 13694 |
Copyright terms: Public domain | W3C validator |