MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzof Structured version   Visualization version   GIF version

Theorem fzof 13655
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzof ..^:(ℤ × ℤ)⟶𝒫 ℤ

Proof of Theorem fzof
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 13529 . . . 4 (𝑚...(𝑛 − 1)) ⊆ ℤ
2 ovex 7447 . . . . 5 (𝑚...(𝑛 − 1)) ∈ V
32elpw 4602 . . . 4 ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ)
41, 3mpbir 230 . . 3 (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
54rgen2w 3062 . 2 𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
6 df-fzo 13654 . . 3 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
76fmpo 8066 . 2 (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ)
85, 7mpbi 229 1 ..^:(ℤ × ℤ)⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wral 3057  wss 3945  𝒫 cpw 4598   × cxp 5670  wf 6538  (class class class)co 7414  1c1 11133  cmin 11468  cz 12582  ...cfz 13510  ..^cfzo 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-neg 11471  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654
This theorem is referenced by:  elfzoel1  13656  elfzoel2  13657  elfzoelz  13658  fzoval  13659  fzofi  13965
  Copyright terms: Public domain W3C validator