| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzof | Structured version Visualization version GIF version | ||
| Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzof | ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzssz 13487 | . . . 4 ⊢ (𝑚...(𝑛 − 1)) ⊆ ℤ | |
| 2 | ovex 7420 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ∈ V | |
| 3 | 2 | elpw 4567 | . . . 4 ⊢ ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
| 5 | 4 | rgen2w 3049 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
| 6 | df-fzo 13616 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 7 | 6 | fmpo 8047 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ) |
| 8 | 5, 7 | mpbi 230 | 1 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 ⟶wf 6507 (class class class)co 7387 1c1 11069 − cmin 11405 ℤcz 12529 ...cfz 13468 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: elfzoel1 13618 elfzoel2 13619 elfzoelz 13620 fzoval 13621 fzofi 13939 |
| Copyright terms: Public domain | W3C validator |