| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzof | Structured version Visualization version GIF version | ||
| Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzof | ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzssz 13548 | . . . 4 ⊢ (𝑚...(𝑛 − 1)) ⊆ ℤ | |
| 2 | ovex 7443 | . . . . 5 ⊢ (𝑚...(𝑛 − 1)) ∈ V | |
| 3 | 2 | elpw 4584 | . . . 4 ⊢ ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
| 5 | 4 | rgen2w 3057 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ |
| 6 | df-fzo 13677 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 7 | 6 | fmpo 8072 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ) |
| 8 | 5, 7 | mpbi 230 | 1 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 𝒫 cpw 4580 × cxp 5657 ⟶wf 6532 (class class class)co 7410 1c1 11135 − cmin 11471 ℤcz 12593 ...cfz 13529 ..^cfzo 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-neg 11474 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 |
| This theorem is referenced by: elfzoel1 13679 elfzoel2 13680 elfzoelz 13681 fzoval 13682 fzofi 13997 |
| Copyright terms: Public domain | W3C validator |