MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzof Structured version   Visualization version   GIF version

Theorem fzof 13570
Description: Functionality of the half-open integer set function. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzof ..^:(ℤ × ℤ)⟶𝒫 ℤ

Proof of Theorem fzof
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssz 13444 . . . 4 (𝑚...(𝑛 − 1)) ⊆ ℤ
2 ovex 7391 . . . . 5 (𝑚...(𝑛 − 1)) ∈ V
32elpw 4565 . . . 4 ((𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ (𝑚...(𝑛 − 1)) ⊆ ℤ)
41, 3mpbir 230 . . 3 (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
54rgen2w 3070 . 2 𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ
6 df-fzo 13569 . . 3 ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
76fmpo 8001 . 2 (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ (𝑚...(𝑛 − 1)) ∈ 𝒫 ℤ ↔ ..^:(ℤ × ℤ)⟶𝒫 ℤ)
85, 7mpbi 229 1 ..^:(ℤ × ℤ)⟶𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wral 3065  wss 3911  𝒫 cpw 4561   × cxp 5632  wf 6493  (class class class)co 7358  1c1 11053  cmin 11386  cz 12500  ...cfz 13425  ..^cfzo 13568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-neg 11389  df-z 12501  df-uz 12765  df-fz 13426  df-fzo 13569
This theorem is referenced by:  elfzoel1  13571  elfzoel2  13572  elfzoelz  13573  fzoval  13574  fzofi  13880
  Copyright terms: Public domain W3C validator