![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzosplit | Structured version Visualization version GIF version |
Description: Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzosplit | ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . . 6 ⊢ ((𝐷 ∈ (𝐵...𝐶) ∧ 𝑥 ∈ (𝐵..^𝐶)) → 𝑥 ∈ (𝐵..^𝐶)) | |
2 | elfzelz 13531 | . . . . . . 7 ⊢ (𝐷 ∈ (𝐵...𝐶) → 𝐷 ∈ ℤ) | |
3 | 2 | adantr 479 | . . . . . 6 ⊢ ((𝐷 ∈ (𝐵...𝐶) ∧ 𝑥 ∈ (𝐵..^𝐶)) → 𝐷 ∈ ℤ) |
4 | fzospliti 13694 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝑥 ∈ (𝐵..^𝐷) ∨ 𝑥 ∈ (𝐷..^𝐶))) | |
5 | 1, 3, 4 | syl2anc 582 | . . . . 5 ⊢ ((𝐷 ∈ (𝐵...𝐶) ∧ 𝑥 ∈ (𝐵..^𝐶)) → (𝑥 ∈ (𝐵..^𝐷) ∨ 𝑥 ∈ (𝐷..^𝐶))) |
6 | elun 4139 | . . . . 5 ⊢ (𝑥 ∈ ((𝐵..^𝐷) ∪ (𝐷..^𝐶)) ↔ (𝑥 ∈ (𝐵..^𝐷) ∨ 𝑥 ∈ (𝐷..^𝐶))) | |
7 | 5, 6 | sylibr 233 | . . . 4 ⊢ ((𝐷 ∈ (𝐵...𝐶) ∧ 𝑥 ∈ (𝐵..^𝐶)) → 𝑥 ∈ ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) |
8 | 7 | ex 411 | . . 3 ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝑥 ∈ (𝐵..^𝐶) → 𝑥 ∈ ((𝐵..^𝐷) ∪ (𝐷..^𝐶)))) |
9 | 8 | ssrdv 3978 | . 2 ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) ⊆ ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) |
10 | elfzuz3 13528 | . . . 4 ⊢ (𝐷 ∈ (𝐵...𝐶) → 𝐶 ∈ (ℤ≥‘𝐷)) | |
11 | fzoss2 13690 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐷) → (𝐵..^𝐷) ⊆ (𝐵..^𝐶)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐷) ⊆ (𝐵..^𝐶)) |
13 | elfzuz 13527 | . . . 4 ⊢ (𝐷 ∈ (𝐵...𝐶) → 𝐷 ∈ (ℤ≥‘𝐵)) | |
14 | fzoss1 13689 | . . . 4 ⊢ (𝐷 ∈ (ℤ≥‘𝐵) → (𝐷..^𝐶) ⊆ (𝐵..^𝐶)) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐷..^𝐶) ⊆ (𝐵..^𝐶)) |
16 | 12, 15 | unssd 4178 | . 2 ⊢ (𝐷 ∈ (𝐵...𝐶) → ((𝐵..^𝐷) ∪ (𝐷..^𝐶)) ⊆ (𝐵..^𝐶)) |
17 | 9, 16 | eqssd 3989 | 1 ⊢ (𝐷 ∈ (𝐵...𝐶) → (𝐵..^𝐶) = ((𝐵..^𝐷) ∪ (𝐷..^𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∪ cun 3937 ⊆ wss 3939 ‘cfv 6541 (class class class)co 7414 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13514 ..^cfzo 13657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-fzo 13658 |
This theorem is referenced by: fzoun 13699 fzosplitsnm1 13737 fzo0to42pr 13749 fzo0sn0fzo1 13751 fzosplitsn 13770 ccatrn 14569 pfxsuffeqwrdeq 14678 dchrisumlem1 27438 dchrisumlem2 27439 crctcshwlkn0lem7 29643 wwlksnext 29720 fzodif1 32578 cycpmco2rn 32863 cycpmconjslem2 32893 fsum2dsub 34268 fzopred 46737 |
Copyright terms: Public domain | W3C validator |