![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | β’ (π β β€ β (π..^π) = (π...(π β 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 β’ (π = π β π = π) | |
2 | oveq1 7418 | . . . 4 β’ (π = π β (π β 1) = (π β 1)) | |
3 | 1, 2 | oveqan12d 7430 | . . 3 β’ ((π = π β§ π = π) β (π...(π β 1)) = (π...(π β 1))) |
4 | df-fzo 13632 | . . 3 β’ ..^ = (π β β€, π β β€ β¦ (π...(π β 1))) | |
5 | ovex 7444 | . . 3 β’ (π...(π β 1)) β V | |
6 | 3, 4, 5 | ovmpoa 7565 | . 2 β’ ((π β β€ β§ π β β€) β (π..^π) = (π...(π β 1))) |
7 | simpl 483 | . . . . 5 β’ ((π β β€ β§ π β β€) β π β β€) | |
8 | fzof 13633 | . . . . . . 7 β’ ..^:(β€ Γ β€)βΆπ« β€ | |
9 | 8 | fdmi 6729 | . . . . . 6 β’ dom ..^ = (β€ Γ β€) |
10 | 9 | ndmov 7593 | . . . . 5 β’ (Β¬ (π β β€ β§ π β β€) β (π..^π) = β ) |
11 | 7, 10 | nsyl5 159 | . . . 4 β’ (Β¬ π β β€ β (π..^π) = β ) |
12 | simpl 483 | . . . . 5 β’ ((π β β€ β§ (π β 1) β β€) β π β β€) | |
13 | fzf 13492 | . . . . . . 7 β’ ...:(β€ Γ β€)βΆπ« β€ | |
14 | 13 | fdmi 6729 | . . . . . 6 β’ dom ... = (β€ Γ β€) |
15 | 14 | ndmov 7593 | . . . . 5 β’ (Β¬ (π β β€ β§ (π β 1) β β€) β (π...(π β 1)) = β ) |
16 | 12, 15 | nsyl5 159 | . . . 4 β’ (Β¬ π β β€ β (π...(π β 1)) = β ) |
17 | 11, 16 | eqtr4d 2775 | . . 3 β’ (Β¬ π β β€ β (π..^π) = (π...(π β 1))) |
18 | 17 | adantr 481 | . 2 β’ ((Β¬ π β β€ β§ π β β€) β (π..^π) = (π...(π β 1))) |
19 | 6, 18 | pm2.61ian 810 | 1 β’ (π β β€ β (π..^π) = (π...(π β 1))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β c0 4322 π« cpw 4602 Γ cxp 5674 (class class class)co 7411 1c1 11113 β cmin 11448 β€cz 12562 ...cfz 13488 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-neg 11451 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: elfzo 13638 fzon 13657 fzoss1 13663 fzoss2 13664 fz1fzo0m1 13684 fzval3 13705 fzo13pr 13720 fzo0to2pr 13721 fzo0to3tp 13722 fzo0to42pr 13723 fzo1to4tp 13724 fzoend 13727 fzofzp1b 13734 elfzom1b 13735 peano2fzor 13743 fzoshftral 13753 zmodfzo 13863 zmodidfzo 13869 fzofi 13943 hashfzo 14393 wrdffz 14489 revcl 14715 revlen 14716 revccat 14720 revrev 14721 revco 14789 fzosump1 15702 telfsumo 15752 fsumparts 15756 geoser 15817 pwdif 15818 pwm1geoser 15819 geo2sum2 15824 dfphi2 16711 reumodprminv 16741 gsumwsubmcl 18754 gsumsgrpccat 18757 gsumwmhm 18762 efgsdmi 19641 efgs1b 19645 efgredlemf 19650 efgredlemd 19653 efgredlemc 19654 efgredlem 19656 cpmadugsumlemF 22598 advlogexp 26387 dchrisumlem1 27216 redwlklem 29183 wlkiswwlks2lem3 29380 wlkiswwlksupgr2 29386 clwlkclwwlklem2a 29506 wlk2v2e 29665 eucrct2eupth 29753 cycpmco2 32550 submat1n 33071 eulerpartlemd 33651 fzssfzo 33836 signstfvn 33866 pthhashvtx 34404 metakunt20 41310 fzosumm1 41374 bccbc 43406 monoords 44306 elfzolem1 44330 stirlinglem12 45100 iccpartiltu 46389 iccpartigtl 46390 iccpartgt 46394 nnsum4primeseven 46767 nnsum4primesevenALTV 46768 nn0sumshdiglemA 47393 nn0sumshdiglemB 47394 |
Copyright terms: Public domain | W3C validator |