| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version | ||
| Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
| 2 | oveq1 7412 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 3 | 1, 2 | oveqan12d 7424 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
| 4 | df-fzo 13672 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 5 | ovex 7438 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
| 6 | 3, 4, 5 | ovmpoa 7562 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 8 | fzof 13673 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 9 | 8 | fdmi 6717 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
| 10 | 9 | ndmov 7591 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 13 | fzf 13528 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 14 | 13 | fdmi 6717 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 15 | 14 | ndmov 7591 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
| 16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
| 17 | 11, 16 | eqtr4d 2773 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 19 | 6, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 𝒫 cpw 4575 × cxp 5652 (class class class)co 7405 1c1 11130 − cmin 11466 ℤcz 12588 ...cfz 13524 ..^cfzo 13671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 |
| This theorem is referenced by: elfzo 13678 fzon 13697 fzoss1 13703 fzoss2 13704 elfzolem1 13721 fz1fzo0m1 13727 fzval3 13750 fzo13pr 13765 fzo0to2pr 13766 fzo0to3tp 13768 fzo0to42pr 13769 fzo1to4tp 13770 fzoend 13773 fzofzp1b 13781 elfzom1b 13782 peano2fzor 13790 fzoshftral 13800 zmodfzo 13911 zmodidfzo 13917 fzofi 13992 hashfzo 14447 wrdffz 14553 revcl 14779 revlen 14780 revccat 14784 revrev 14785 revco 14853 fzosump1 15768 telfsumo 15818 fsumparts 15822 geoser 15883 pwdif 15884 pwm1geoser 15885 geo2sum2 15890 dfphi2 16793 reumodprminv 16824 gsumwsubmcl 18815 gsumsgrpccat 18818 gsumwmhm 18823 efgsdmi 19713 efgs1b 19717 efgredlemf 19722 efgredlemd 19725 efgredlemc 19726 efgredlem 19728 cpmadugsumlemF 22814 advlogexp 26616 dchrisumlem1 27452 redwlklem 29651 wlkiswwlks2lem3 29853 wlkiswwlksupgr2 29859 clwlkclwwlklem2a 29979 wlk2v2e 30138 eucrct2eupth 30226 cycpmco2 33144 submat1n 33836 eulerpartlemd 34398 fzssfzo 34571 signstfvn 34601 pthhashvtx 35150 remexz 42117 metakunt20 42237 fzosumm1 42301 bccbc 44369 monoords 45326 stirlinglem12 46114 difltmodne 47371 iccpartiltu 47436 iccpartigtl 47437 iccpartgt 47441 nnsum4primeseven 47814 nnsum4primesevenALTV 47815 nn0sumshdiglemA 48599 nn0sumshdiglemB 48600 |
| Copyright terms: Public domain | W3C validator |