Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
2 | oveq1 7262 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
3 | 1, 2 | oveqan12d 7274 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
4 | df-fzo 13312 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
5 | ovex 7288 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
6 | 3, 4, 5 | ovmpoa 7406 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
8 | fzof 13313 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
9 | 8 | fdmi 6596 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
10 | 9 | ndmov 7434 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
13 | fzf 13172 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
14 | 13 | fdmi 6596 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
15 | 14 | ndmov 7434 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
17 | 11, 16 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
19 | 6, 18 | pm2.61ian 808 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 𝒫 cpw 4530 × cxp 5578 (class class class)co 7255 1c1 10803 − cmin 11135 ℤcz 12249 ...cfz 13168 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: elfzo 13318 fzon 13336 fzoss1 13342 fzoss2 13343 fz1fzo0m1 13363 fzval3 13384 fzo13pr 13399 fzo0to2pr 13400 fzo0to3tp 13401 fzo0to42pr 13402 fzo1to4tp 13403 fzoend 13406 fzofzp1b 13413 elfzom1b 13414 peano2fzor 13422 fzoshftral 13432 zmodfzo 13542 zmodidfzo 13548 fzofi 13622 hashfzo 14072 wrdffz 14166 revcl 14402 revlen 14403 revccat 14407 revrev 14408 revco 14475 fzosump1 15392 telfsumo 15442 fsumparts 15446 geoser 15507 pwdif 15508 pwm1geoser 15509 geo2sum2 15514 dfphi2 16403 reumodprminv 16433 gsumwsubmcl 18390 gsumsgrpccat 18393 gsumccatOLD 18394 gsumwmhm 18399 efgsdmi 19253 efgs1b 19257 efgredlemf 19262 efgredlemd 19265 efgredlemc 19266 efgredlem 19268 cpmadugsumlemF 21933 advlogexp 25715 dchrisumlem1 26542 redwlklem 27941 wlkiswwlks2lem3 28137 wlkiswwlksupgr2 28143 clwlkclwwlklem2a 28263 wlk2v2e 28422 eucrct2eupth 28510 cycpmco2 31302 submat1n 31657 eulerpartlemd 32233 fzssfzo 32418 signstfvn 32448 pthhashvtx 32989 metakunt20 40072 fzosumm1 40144 bccbc 41852 monoords 42726 elfzolem1 42750 stirlinglem12 43516 iccpartiltu 44762 iccpartigtl 44763 iccpartgt 44767 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 nn0sumshdiglemA 45853 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |