![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
2 | oveq1 6977 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
3 | 1, 2 | oveqan12d 6989 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
4 | df-fzo 12843 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
5 | ovex 7002 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
6 | 3, 4, 5 | ovmpoa 7115 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
7 | simpl 475 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
8 | 7 | con3i 152 | . . . . 5 ⊢ (¬ 𝑀 ∈ ℤ → ¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
9 | fzof 12844 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
10 | 9 | fdmi 6348 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
11 | 10 | ndmov 7142 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
12 | 8, 11 | syl 17 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
13 | simpl 475 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
14 | 13 | con3i 152 | . . . . 5 ⊢ (¬ 𝑀 ∈ ℤ → ¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)) |
15 | fzf 12705 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
16 | 15 | fdmi 6348 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
17 | 16 | ndmov 7142 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
18 | 14, 17 | syl 17 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
19 | 12, 18 | eqtr4d 2811 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
20 | 19 | adantr 473 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
21 | 6, 20 | pm2.61ian 799 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∅c0 4173 𝒫 cpw 4416 × cxp 5398 (class class class)co 6970 1c1 10328 − cmin 10662 ℤcz 11786 ...cfz 12701 ..^cfzo 12842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-neg 10665 df-z 11787 df-uz 12052 df-fz 12702 df-fzo 12843 |
This theorem is referenced by: elfzo 12849 fzon 12866 fzoss1 12872 fzoss2 12873 fz1fzo0m1 12893 fzval3 12914 fzo13pr 12929 fzo0to2pr 12930 fzo0to3tp 12931 fzo0to42pr 12932 fzo1to4tp 12933 fzoend 12936 fzofzp1b 12943 elfzom1b 12944 peano2fzor 12952 fzoshftral 12962 zmodfzo 13070 zmodidfzo 13076 fzofi 13150 hashfzo 13593 wrdffz 13686 revcl 13970 revlen 13971 revccat 13975 revrev 13976 revco 14048 fzosump1 14957 telfsumo 15007 fsumparts 15011 geoser 15072 pwdif 15073 pwm1geoser 15074 geo2sum2 15080 dfphi2 15957 reumodprminv 15987 gsumwsubmcl 17833 gsumccat 17836 gsumwmhm 17841 efgsdmi 18606 efgs1b 18610 efgredlemf 18616 efgredlemd 18619 efgredlemc 18620 efgredlem 18622 efgredlemOLD 18623 cpmadugsumlemF 21178 advlogexp 24929 dchrisumlem1 25757 redwlklem 27149 wlkiswwlks2lem3 27347 wlkiswwlksupgr2 27353 clwlkclwwlklem2a 27494 wlk2v2e 27676 eucrct2eupthOLD 27766 eucrct2eupth 27767 submat1n 30669 eulerpartlemd 31226 fzssfzo 31412 signstfvn 31446 fzosumm1 38516 bccbc 40037 monoords 40939 elfzolem1 40964 stirlinglem12 41747 iccpartiltu 42900 iccpartigtl 42901 iccpartgt 42905 nnsum4primeseven 43273 nnsum4primesevenALTV 43274 nn0sumshdiglemA 43987 nn0sumshdiglemB 43988 |
Copyright terms: Public domain | W3C validator |