![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
2 | oveq1 7437 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
3 | 1, 2 | oveqan12d 7449 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
4 | df-fzo 13691 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
5 | ovex 7463 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
6 | 3, 4, 5 | ovmpoa 7587 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
8 | fzof 13692 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
9 | 8 | fdmi 6747 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
10 | 9 | ndmov 7616 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
13 | fzf 13547 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
14 | 13 | fdmi 6747 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
15 | 14 | ndmov 7616 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
17 | 11, 16 | eqtr4d 2777 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
19 | 6, 18 | pm2.61ian 812 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∅c0 4338 𝒫 cpw 4604 × cxp 5686 (class class class)co 7430 1c1 11153 − cmin 11489 ℤcz 12610 ...cfz 13543 ..^cfzo 13690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-neg 11492 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 |
This theorem is referenced by: elfzo 13697 fzon 13716 fzoss1 13722 fzoss2 13723 elfzolem1 13740 fz1fzo0m1 13746 fzval3 13769 fzo13pr 13784 fzo0to2pr 13785 fzo0to3tp 13787 fzo0to42pr 13788 fzo1to4tp 13789 fzoend 13792 fzofzp1b 13800 elfzom1b 13801 peano2fzor 13809 fzoshftral 13819 zmodfzo 13930 zmodidfzo 13936 fzofi 14011 hashfzo 14464 wrdffz 14569 revcl 14795 revlen 14796 revccat 14800 revrev 14801 revco 14869 fzosump1 15784 telfsumo 15834 fsumparts 15838 geoser 15899 pwdif 15900 pwm1geoser 15901 geo2sum2 15906 dfphi2 16807 reumodprminv 16837 gsumwsubmcl 18862 gsumsgrpccat 18865 gsumwmhm 18870 efgsdmi 19764 efgs1b 19768 efgredlemf 19773 efgredlemd 19776 efgredlemc 19777 efgredlem 19779 cpmadugsumlemF 22897 advlogexp 26711 dchrisumlem1 27547 redwlklem 29703 wlkiswwlks2lem3 29900 wlkiswwlksupgr2 29906 clwlkclwwlklem2a 30026 wlk2v2e 30185 eucrct2eupth 30273 cycpmco2 33135 submat1n 33765 eulerpartlemd 34347 fzssfzo 34532 signstfvn 34562 pthhashvtx 35111 remexz 42085 metakunt20 42205 fzosumm1 42269 bccbc 44340 monoords 45247 stirlinglem12 46040 difltmodne 47281 iccpartiltu 47346 iccpartigtl 47347 iccpartgt 47351 nnsum4primeseven 47724 nnsum4primesevenALTV 47725 nn0sumshdiglemA 48468 nn0sumshdiglemB 48469 |
Copyright terms: Public domain | W3C validator |