![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
2 | oveq1 7455 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
3 | 1, 2 | oveqan12d 7467 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
4 | df-fzo 13712 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
5 | ovex 7481 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
6 | 3, 4, 5 | ovmpoa 7605 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
8 | fzof 13713 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
9 | 8 | fdmi 6758 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
10 | 9 | ndmov 7634 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
13 | fzf 13571 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
14 | 13 | fdmi 6758 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
15 | 14 | ndmov 7634 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
17 | 11, 16 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
19 | 6, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 𝒫 cpw 4622 × cxp 5698 (class class class)co 7448 1c1 11185 − cmin 11520 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: elfzo 13718 fzon 13737 fzoss1 13743 fzoss2 13744 fz1fzo0m1 13764 fzval3 13785 fzo13pr 13800 fzo0to2pr 13801 fzo0to3tp 13802 fzo0to42pr 13803 fzo1to4tp 13804 fzoend 13807 fzofzp1b 13815 elfzom1b 13816 peano2fzor 13824 fzoshftral 13834 zmodfzo 13945 zmodidfzo 13951 fzofi 14025 hashfzo 14478 wrdffz 14583 revcl 14809 revlen 14810 revccat 14814 revrev 14815 revco 14883 fzosump1 15800 telfsumo 15850 fsumparts 15854 geoser 15915 pwdif 15916 pwm1geoser 15917 geo2sum2 15922 dfphi2 16821 reumodprminv 16851 gsumwsubmcl 18872 gsumsgrpccat 18875 gsumwmhm 18880 efgsdmi 19774 efgs1b 19778 efgredlemf 19783 efgredlemd 19786 efgredlemc 19787 efgredlem 19789 cpmadugsumlemF 22903 advlogexp 26715 dchrisumlem1 27551 redwlklem 29707 wlkiswwlks2lem3 29904 wlkiswwlksupgr2 29910 clwlkclwwlklem2a 30030 wlk2v2e 30189 eucrct2eupth 30277 cycpmco2 33126 submat1n 33751 eulerpartlemd 34331 fzssfzo 34516 signstfvn 34546 pthhashvtx 35095 remexz 42061 metakunt20 42181 fzosumm1 42245 bccbc 44314 monoords 45212 elfzolem1 45236 stirlinglem12 46006 iccpartiltu 47296 iccpartigtl 47297 iccpartgt 47301 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 nn0sumshdiglemA 48353 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |