| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version | ||
| Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
| 2 | oveq1 7394 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 3 | 1, 2 | oveqan12d 7406 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
| 4 | df-fzo 13616 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 5 | ovex 7420 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
| 6 | 3, 4, 5 | ovmpoa 7544 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 8 | fzof 13617 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 9 | 8 | fdmi 6699 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
| 10 | 9 | ndmov 7573 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 13 | fzf 13472 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 14 | 13 | fdmi 6699 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 15 | 14 | ndmov 7573 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
| 16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
| 17 | 11, 16 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 19 | 6, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 𝒫 cpw 4563 × cxp 5636 (class class class)co 7387 1c1 11069 − cmin 11405 ℤcz 12529 ...cfz 13468 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: elfzo 13622 fzon 13641 fzoss1 13647 fzoss2 13648 elfzolem1 13665 fz1fzo0m1 13671 fzval3 13695 fzo13pr 13710 fzo0to2pr 13711 fzo0to3tp 13713 fzo0to42pr 13714 fzo1to4tp 13715 fzoend 13718 fzofzp1b 13726 elfzom1b 13727 peano2fzor 13735 fzoshftral 13745 zmodfzo 13856 zmodidfzo 13862 fzofi 13939 hashfzo 14394 wrdffz 14500 revcl 14726 revlen 14727 revccat 14731 revrev 14732 revco 14800 fzosump1 15718 telfsumo 15768 fsumparts 15772 geoser 15833 pwdif 15834 pwm1geoser 15835 geo2sum2 15840 dfphi2 16744 reumodprminv 16775 gsumwsubmcl 18764 gsumsgrpccat 18767 gsumwmhm 18772 efgsdmi 19662 efgs1b 19666 efgredlemf 19671 efgredlemd 19674 efgredlemc 19675 efgredlem 19677 cpmadugsumlemF 22763 advlogexp 26564 dchrisumlem1 27400 redwlklem 29599 wlkiswwlks2lem3 29801 wlkiswwlksupgr2 29807 clwlkclwwlklem2a 29927 wlk2v2e 30086 eucrct2eupth 30174 cycpmco2 33090 submat1n 33795 eulerpartlemd 34357 fzssfzo 34530 signstfvn 34560 pthhashvtx 35115 remexz 42092 fzosumm1 42238 bccbc 44334 monoords 45295 stirlinglem12 46083 difltmodne 47343 iccpartiltu 47423 iccpartigtl 47424 iccpartgt 47428 nnsum4primeseven 47801 nnsum4primesevenALTV 47802 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 |
| Copyright terms: Public domain | W3C validator |