Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
2 | oveq1 7291 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
3 | 1, 2 | oveqan12d 7303 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
4 | df-fzo 13392 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
5 | ovex 7317 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
6 | 3, 4, 5 | ovmpoa 7437 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
7 | simpl 483 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
8 | fzof 13393 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
9 | 8 | fdmi 6621 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
10 | 9 | ndmov 7465 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
12 | simpl 483 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
13 | fzf 13252 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
14 | 13 | fdmi 6621 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
15 | 14 | ndmov 7465 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
17 | 11, 16 | eqtr4d 2782 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
18 | 17 | adantr 481 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
19 | 6, 18 | pm2.61ian 809 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∅c0 4257 𝒫 cpw 4534 × cxp 5588 (class class class)co 7284 1c1 10881 − cmin 11214 ℤcz 12328 ...cfz 13248 ..^cfzo 13391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-neg 11217 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 |
This theorem is referenced by: elfzo 13398 fzon 13417 fzoss1 13423 fzoss2 13424 fz1fzo0m1 13444 fzval3 13465 fzo13pr 13480 fzo0to2pr 13481 fzo0to3tp 13482 fzo0to42pr 13483 fzo1to4tp 13484 fzoend 13487 fzofzp1b 13494 elfzom1b 13495 peano2fzor 13503 fzoshftral 13513 zmodfzo 13623 zmodidfzo 13629 fzofi 13703 hashfzo 14153 wrdffz 14247 revcl 14483 revlen 14484 revccat 14488 revrev 14489 revco 14556 fzosump1 15473 telfsumo 15523 fsumparts 15527 geoser 15588 pwdif 15589 pwm1geoser 15590 geo2sum2 15595 dfphi2 16484 reumodprminv 16514 gsumwsubmcl 18484 gsumsgrpccat 18487 gsumccatOLD 18488 gsumwmhm 18493 efgsdmi 19347 efgs1b 19351 efgredlemf 19356 efgredlemd 19359 efgredlemc 19360 efgredlem 19362 cpmadugsumlemF 22034 advlogexp 25819 dchrisumlem1 26646 redwlklem 28048 wlkiswwlks2lem3 28245 wlkiswwlksupgr2 28251 clwlkclwwlklem2a 28371 wlk2v2e 28530 eucrct2eupth 28618 cycpmco2 31409 submat1n 31764 eulerpartlemd 32342 fzssfzo 32527 signstfvn 32557 pthhashvtx 33098 metakunt20 40151 fzosumm1 40225 bccbc 41970 monoords 42843 elfzolem1 42867 stirlinglem12 43633 iccpartiltu 44885 iccpartigtl 44886 iccpartgt 44890 nnsum4primeseven 45263 nnsum4primesevenALTV 45264 nn0sumshdiglemA 45976 nn0sumshdiglemB 45977 |
Copyright terms: Public domain | W3C validator |