| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version | ||
| Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
| 2 | oveq1 7397 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 3 | 1, 2 | oveqan12d 7409 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
| 4 | df-fzo 13623 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 5 | ovex 7423 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
| 6 | 3, 4, 5 | ovmpoa 7547 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 8 | fzof 13624 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 9 | 8 | fdmi 6702 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
| 10 | 9 | ndmov 7576 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 13 | fzf 13479 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 14 | 13 | fdmi 6702 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 15 | 14 | ndmov 7576 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
| 16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
| 17 | 11, 16 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 19 | 6, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4299 𝒫 cpw 4566 × cxp 5639 (class class class)co 7390 1c1 11076 − cmin 11412 ℤcz 12536 ...cfz 13475 ..^cfzo 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 |
| This theorem is referenced by: elfzo 13629 fzon 13648 fzoss1 13654 fzoss2 13655 elfzolem1 13672 fz1fzo0m1 13678 fzval3 13702 fzo13pr 13717 fzo0to2pr 13718 fzo0to3tp 13720 fzo0to42pr 13721 fzo1to4tp 13722 fzoend 13725 fzofzp1b 13733 elfzom1b 13734 peano2fzor 13742 fzoshftral 13752 zmodfzo 13863 zmodidfzo 13869 fzofi 13946 hashfzo 14401 wrdffz 14507 revcl 14733 revlen 14734 revccat 14738 revrev 14739 revco 14807 fzosump1 15725 telfsumo 15775 fsumparts 15779 geoser 15840 pwdif 15841 pwm1geoser 15842 geo2sum2 15847 dfphi2 16751 reumodprminv 16782 gsumwsubmcl 18771 gsumsgrpccat 18774 gsumwmhm 18779 efgsdmi 19669 efgs1b 19673 efgredlemf 19678 efgredlemd 19681 efgredlemc 19682 efgredlem 19684 cpmadugsumlemF 22770 advlogexp 26571 dchrisumlem1 27407 redwlklem 29606 wlkiswwlks2lem3 29808 wlkiswwlksupgr2 29814 clwlkclwwlklem2a 29934 wlk2v2e 30093 eucrct2eupth 30181 cycpmco2 33097 submat1n 33802 eulerpartlemd 34364 fzssfzo 34537 signstfvn 34567 pthhashvtx 35122 remexz 42099 fzosumm1 42245 bccbc 44341 monoords 45302 stirlinglem12 46090 difltmodne 47347 iccpartiltu 47427 iccpartigtl 47428 iccpartgt 47432 nnsum4primeseven 47805 nnsum4primesevenALTV 47806 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 |
| Copyright terms: Public domain | W3C validator |