| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version | ||
| Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzoval | ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑚 = 𝑀 → 𝑚 = 𝑀) | |
| 2 | oveq1 7353 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) | |
| 3 | 1, 2 | oveqan12d 7365 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑛 = 𝑁) → (𝑚...(𝑛 − 1)) = (𝑀...(𝑁 − 1))) |
| 4 | df-fzo 13555 | . . 3 ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) | |
| 5 | ovex 7379 | . . 3 ⊢ (𝑀...(𝑁 − 1)) ∈ V | |
| 6 | 3, 4, 5 | ovmpoa 7501 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 8 | fzof 13556 | . . . . . . 7 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
| 9 | 8 | fdmi 6662 | . . . . . 6 ⊢ dom ..^ = (ℤ × ℤ) |
| 10 | 9 | ndmov 7530 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = ∅) |
| 11 | 7, 10 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = ∅) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → 𝑀 ∈ ℤ) | |
| 13 | fzf 13411 | . . . . . . 7 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ | |
| 14 | 13 | fdmi 6662 | . . . . . 6 ⊢ dom ... = (ℤ × ℤ) |
| 15 | 14 | ndmov 7530 | . . . . 5 ⊢ (¬ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀...(𝑁 − 1)) = ∅) |
| 16 | 12, 15 | nsyl5 159 | . . . 4 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀...(𝑁 − 1)) = ∅) |
| 17 | 11, 16 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑀 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 19 | 6, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4280 𝒫 cpw 4547 × cxp 5612 (class class class)co 7346 1c1 11007 − cmin 11344 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 |
| This theorem is referenced by: elfzo 13561 fzon 13580 fzoss1 13586 fzoss2 13587 elfzolem1 13604 fz1fzo0m1 13610 fzval3 13634 fzo13pr 13649 fzo0to2pr 13650 fzo0to3tp 13652 fzo0to42pr 13653 fzo1to4tp 13654 fzoend 13657 fzofzp1b 13665 elfzom1b 13666 peano2fzor 13675 fzoshftral 13687 zmodfzo 13798 zmodidfzo 13804 fzofi 13881 hashfzo 14336 wrdffz 14442 revcl 14668 revlen 14669 revccat 14673 revrev 14674 revco 14741 fzosump1 15659 telfsumo 15709 fsumparts 15713 geoser 15774 pwdif 15775 pwm1geoser 15776 geo2sum2 15781 dfphi2 16685 reumodprminv 16716 gsumwsubmcl 18745 gsumsgrpccat 18748 gsumwmhm 18753 efgsdmi 19644 efgs1b 19648 efgredlemf 19653 efgredlemd 19656 efgredlemc 19657 efgredlem 19659 cpmadugsumlemF 22791 advlogexp 26591 dchrisumlem1 27427 redwlklem 29648 wlkiswwlks2lem3 29849 wlkiswwlksupgr2 29855 clwlkclwwlklem2a 29978 wlk2v2e 30137 eucrct2eupth 30225 cycpmco2 33102 submat1n 33818 eulerpartlemd 34379 fzssfzo 34552 signstfvn 34582 pthhashvtx 35172 remexz 42196 fzosumm1 42342 bccbc 44437 monoords 45397 stirlinglem12 46182 difltmodne 47441 iccpartiltu 47521 iccpartigtl 47522 iccpartgt 47526 nnsum4primeseven 47899 nnsum4primesevenALTV 47900 nn0sumshdiglemA 48719 nn0sumshdiglemB 48720 |
| Copyright terms: Public domain | W3C validator |