![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoval | Structured version Visualization version GIF version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | β’ (π β β€ β (π..^π) = (π...(π β 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 β’ (π = π β π = π) | |
2 | oveq1 7416 | . . . 4 β’ (π = π β (π β 1) = (π β 1)) | |
3 | 1, 2 | oveqan12d 7428 | . . 3 β’ ((π = π β§ π = π) β (π...(π β 1)) = (π...(π β 1))) |
4 | df-fzo 13628 | . . 3 β’ ..^ = (π β β€, π β β€ β¦ (π...(π β 1))) | |
5 | ovex 7442 | . . 3 β’ (π...(π β 1)) β V | |
6 | 3, 4, 5 | ovmpoa 7563 | . 2 β’ ((π β β€ β§ π β β€) β (π..^π) = (π...(π β 1))) |
7 | simpl 484 | . . . . 5 β’ ((π β β€ β§ π β β€) β π β β€) | |
8 | fzof 13629 | . . . . . . 7 β’ ..^:(β€ Γ β€)βΆπ« β€ | |
9 | 8 | fdmi 6730 | . . . . . 6 β’ dom ..^ = (β€ Γ β€) |
10 | 9 | ndmov 7591 | . . . . 5 β’ (Β¬ (π β β€ β§ π β β€) β (π..^π) = β ) |
11 | 7, 10 | nsyl5 159 | . . . 4 β’ (Β¬ π β β€ β (π..^π) = β ) |
12 | simpl 484 | . . . . 5 β’ ((π β β€ β§ (π β 1) β β€) β π β β€) | |
13 | fzf 13488 | . . . . . . 7 β’ ...:(β€ Γ β€)βΆπ« β€ | |
14 | 13 | fdmi 6730 | . . . . . 6 β’ dom ... = (β€ Γ β€) |
15 | 14 | ndmov 7591 | . . . . 5 β’ (Β¬ (π β β€ β§ (π β 1) β β€) β (π...(π β 1)) = β ) |
16 | 12, 15 | nsyl5 159 | . . . 4 β’ (Β¬ π β β€ β (π...(π β 1)) = β ) |
17 | 11, 16 | eqtr4d 2776 | . . 3 β’ (Β¬ π β β€ β (π..^π) = (π...(π β 1))) |
18 | 17 | adantr 482 | . 2 β’ ((Β¬ π β β€ β§ π β β€) β (π..^π) = (π...(π β 1))) |
19 | 6, 18 | pm2.61ian 811 | 1 β’ (π β β€ β (π..^π) = (π...(π β 1))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β c0 4323 π« cpw 4603 Γ cxp 5675 (class class class)co 7409 1c1 11111 β cmin 11444 β€cz 12558 ...cfz 13484 ..^cfzo 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-neg 11447 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 |
This theorem is referenced by: elfzo 13634 fzon 13653 fzoss1 13659 fzoss2 13660 fz1fzo0m1 13680 fzval3 13701 fzo13pr 13716 fzo0to2pr 13717 fzo0to3tp 13718 fzo0to42pr 13719 fzo1to4tp 13720 fzoend 13723 fzofzp1b 13730 elfzom1b 13731 peano2fzor 13739 fzoshftral 13749 zmodfzo 13859 zmodidfzo 13865 fzofi 13939 hashfzo 14389 wrdffz 14485 revcl 14711 revlen 14712 revccat 14716 revrev 14717 revco 14785 fzosump1 15698 telfsumo 15748 fsumparts 15752 geoser 15813 pwdif 15814 pwm1geoser 15815 geo2sum2 15820 dfphi2 16707 reumodprminv 16737 gsumwsubmcl 18718 gsumsgrpccat 18721 gsumwmhm 18726 efgsdmi 19600 efgs1b 19604 efgredlemf 19609 efgredlemd 19612 efgredlemc 19613 efgredlem 19615 cpmadugsumlemF 22378 advlogexp 26163 dchrisumlem1 26992 redwlklem 28928 wlkiswwlks2lem3 29125 wlkiswwlksupgr2 29131 clwlkclwwlklem2a 29251 wlk2v2e 29410 eucrct2eupth 29498 cycpmco2 32292 submat1n 32785 eulerpartlemd 33365 fzssfzo 33550 signstfvn 33580 pthhashvtx 34118 metakunt20 41004 fzosumm1 41068 bccbc 43104 monoords 44007 elfzolem1 44031 stirlinglem12 44801 iccpartiltu 46090 iccpartigtl 46091 iccpartgt 46095 nnsum4primeseven 46468 nnsum4primesevenALTV 46469 nn0sumshdiglemA 47305 nn0sumshdiglemB 47306 |
Copyright terms: Public domain | W3C validator |