Detailed syntax breakdown of Definition df-gcd
Step | Hyp | Ref
| Expression |
1 | | cgcd 16129 |
. 2
class
gcd |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cz 12249 |
. . 3
class
ℤ |
5 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
6 | | cc0 10802 |
. . . . . 6
class
0 |
7 | 5, 6 | wceq 1539 |
. . . . 5
wff 𝑥 = 0 |
8 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
9 | 8, 6 | wceq 1539 |
. . . . 5
wff 𝑦 = 0 |
10 | 7, 9 | wa 395 |
. . . 4
wff (𝑥 = 0 ∧ 𝑦 = 0) |
11 | | vn |
. . . . . . . . 9
setvar 𝑛 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑛 |
13 | | cdvds 15891 |
. . . . . . . 8
class
∥ |
14 | 12, 5, 13 | wbr 5070 |
. . . . . . 7
wff 𝑛 ∥ 𝑥 |
15 | 12, 8, 13 | wbr 5070 |
. . . . . . 7
wff 𝑛 ∥ 𝑦 |
16 | 14, 15 | wa 395 |
. . . . . 6
wff (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦) |
17 | 16, 11, 4 | crab 3067 |
. . . . 5
class {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)} |
18 | | cr 10801 |
. . . . 5
class
ℝ |
19 | | clt 10940 |
. . . . 5
class
< |
20 | 17, 18, 19 | csup 9129 |
. . . 4
class
sup({𝑛 ∈
ℤ ∣ (𝑛 ∥
𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ) |
21 | 10, 6, 20 | cif 4456 |
. . 3
class if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < )) |
22 | 2, 3, 4, 4, 21 | cmpo 7257 |
. 2
class (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦
if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |
23 | 1, 22 | wceq 1539 |
1
wff gcd =
(𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦
if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |