Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gcdval | Structured version Visualization version GIF version |
Description: The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.) |
Ref | Expression |
---|---|
gcdval | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0)) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ (𝑥 = 𝑀 → ((𝑥 = 0 ∧ 𝑦 = 0) ↔ (𝑀 = 0 ∧ 𝑦 = 0))) |
3 | breq2 5074 | . . . . . 6 ⊢ (𝑥 = 𝑀 → (𝑛 ∥ 𝑥 ↔ 𝑛 ∥ 𝑀)) | |
4 | 3 | anbi1d 629 | . . . . 5 ⊢ (𝑥 = 𝑀 → ((𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦) ↔ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦))) |
5 | 4 | rabbidv 3404 | . . . 4 ⊢ (𝑥 = 𝑀 → {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)} = {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦)}) |
6 | 5 | supeq1d 9135 | . . 3 ⊢ (𝑥 = 𝑀 → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦)}, ℝ, < )) |
7 | 2, 6 | ifbieq2d 4482 | . 2 ⊢ (𝑥 = 𝑀 → if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < )) = if((𝑀 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |
8 | eqeq1 2742 | . . . 4 ⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) | |
9 | 8 | anbi2d 628 | . . 3 ⊢ (𝑦 = 𝑁 → ((𝑀 = 0 ∧ 𝑦 = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0))) |
10 | breq2 5074 | . . . . . 6 ⊢ (𝑦 = 𝑁 → (𝑛 ∥ 𝑦 ↔ 𝑛 ∥ 𝑁)) | |
11 | 10 | anbi2d 628 | . . . . 5 ⊢ (𝑦 = 𝑁 → ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦) ↔ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁))) |
12 | 11 | rabbidv 3404 | . . . 4 ⊢ (𝑦 = 𝑁 → {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦)} = {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) |
13 | 12 | supeq1d 9135 | . . 3 ⊢ (𝑦 = 𝑁 → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) |
14 | 9, 13 | ifbieq2d 4482 | . 2 ⊢ (𝑦 = 𝑁 → if((𝑀 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑦)}, ℝ, < )) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
15 | df-gcd 16130 | . 2 ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) | |
16 | c0ex 10900 | . . 3 ⊢ 0 ∈ V | |
17 | ltso 10986 | . . . 4 ⊢ < Or ℝ | |
18 | 17 | supex 9152 | . . 3 ⊢ sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) ∈ V |
19 | 16, 18 | ifex 4506 | . 2 ⊢ if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) ∈ V |
20 | 7, 14, 15, 19 | ovmpo 7411 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ifcif 4456 class class class wbr 5070 (class class class)co 7255 supcsup 9129 ℝcr 10801 0cc0 10802 < clt 10940 ℤcz 12249 ∥ cdvds 15891 gcd cgcd 16129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-gcd 16130 |
This theorem is referenced by: gcd0val 16132 gcdn0val 16133 gcdf 16147 gcdcom 16148 dfgcd2 16182 gcdass 16183 |
Copyright terms: Public domain | W3C validator |