![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-gcd | Structured version Visualization version GIF version |
Description: Example for df-gcd 16497. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-gcd | ⊢ (-6 gcd 9) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12355 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 12640 | . . 3 ⊢ 6 ∈ ℤ |
3 | 9nn 12364 | . . . 4 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12640 | . . 3 ⊢ 9 ∈ ℤ |
5 | neggcd 16525 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
6 | 2, 4, 5 | mp2an 690 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
7 | 6cn 12357 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 3cn 12347 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 6p3e9 12426 | . . . . . 6 ⊢ (6 + 3) = 9 | |
10 | 7, 8, 9 | addcomli 11458 | . . . . 5 ⊢ (3 + 6) = 9 |
11 | 10 | eqcomi 2735 | . . . 4 ⊢ 9 = (3 + 6) |
12 | 11 | oveq2i 7437 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
13 | 3z 12649 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | gcdcom 16515 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
15 | 2, 13, 14 | mp2an 690 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
16 | 3p3e6 12418 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
17 | 16 | eqcomi 2735 | . . . . . 6 ⊢ 6 = (3 + 3) |
18 | 17 | oveq2i 7437 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
19 | 15, 18 | eqtri 2754 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
20 | gcdadd 16528 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
21 | 2, 13, 20 | mp2an 690 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
22 | gcdid 16529 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
24 | gcdadd 16528 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
25 | 13, 13, 24 | mp2an 690 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
26 | 3re 12346 | . . . . . 6 ⊢ 3 ∈ ℝ | |
27 | 0re 11268 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | 3pos 12371 | . . . . . . 7 ⊢ 0 < 3 | |
29 | 27, 26, 28 | ltleii 11389 | . . . . . 6 ⊢ 0 ≤ 3 |
30 | absid 15303 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
31 | 26, 29, 30 | mp2an 690 | . . . . 5 ⊢ (abs‘3) = 3 |
32 | 23, 25, 31 | 3eqtr3i 2762 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
33 | 19, 21, 32 | 3eqtr3i 2762 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
34 | 12, 33 | eqtri 2754 | . 2 ⊢ (6 gcd 9) = 3 |
35 | 6, 34 | eqtri 2754 | 1 ⊢ (-6 gcd 9) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 class class class wbr 5155 ‘cfv 6556 (class class class)co 7426 ℝcr 11159 0cc0 11160 + caddc 11163 ≤ cle 11301 -cneg 11497 3c3 12322 6c6 12325 9c9 12328 ℤcz 12612 abscabs 15241 gcd cgcd 16496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-sup 9487 df-inf 9488 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12613 df-uz 12877 df-rp 13031 df-seq 14024 df-exp 14084 df-cj 15106 df-re 15107 df-im 15108 df-sqrt 15242 df-abs 15243 df-dvds 16259 df-gcd 16497 |
This theorem is referenced by: ex-lcm 30394 |
Copyright terms: Public domain | W3C validator |