MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-gcd Structured version   Visualization version   GIF version

Theorem ex-gcd 30476
Description: Example for df-gcd 16532. (Contributed by AV, 5-Sep-2021.)
Assertion
Ref Expression
ex-gcd (-6 gcd 9) = 3

Proof of Theorem ex-gcd
StepHypRef Expression
1 6nn 12355 . . . 4 6 ∈ ℕ
21nnzi 12641 . . 3 6 ∈ ℤ
3 9nn 12364 . . . 4 9 ∈ ℕ
43nnzi 12641 . . 3 9 ∈ ℤ
5 neggcd 16560 . . 3 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9))
62, 4, 5mp2an 692 . 2 (-6 gcd 9) = (6 gcd 9)
7 6cn 12357 . . . . . 6 6 ∈ ℂ
8 3cn 12347 . . . . . 6 3 ∈ ℂ
9 6p3e9 12426 . . . . . 6 (6 + 3) = 9
107, 8, 9addcomli 11453 . . . . 5 (3 + 6) = 9
1110eqcomi 2746 . . . 4 9 = (3 + 6)
1211oveq2i 7442 . . 3 (6 gcd 9) = (6 gcd (3 + 6))
13 3z 12650 . . . . . 6 3 ∈ ℤ
14 gcdcom 16550 . . . . . 6 ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6))
152, 13, 14mp2an 692 . . . . 5 (6 gcd 3) = (3 gcd 6)
16 3p3e6 12418 . . . . . . 7 (3 + 3) = 6
1716eqcomi 2746 . . . . . 6 6 = (3 + 3)
1817oveq2i 7442 . . . . 5 (3 gcd 6) = (3 gcd (3 + 3))
1915, 18eqtri 2765 . . . 4 (6 gcd 3) = (3 gcd (3 + 3))
20 gcdadd 16563 . . . . 5 ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6)))
212, 13, 20mp2an 692 . . . 4 (6 gcd 3) = (6 gcd (3 + 6))
22 gcdid 16564 . . . . . 6 (3 ∈ ℤ → (3 gcd 3) = (abs‘3))
2313, 22ax-mp 5 . . . . 5 (3 gcd 3) = (abs‘3)
24 gcdadd 16563 . . . . . 6 ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3)))
2513, 13, 24mp2an 692 . . . . 5 (3 gcd 3) = (3 gcd (3 + 3))
26 3re 12346 . . . . . 6 3 ∈ ℝ
27 0re 11263 . . . . . . 7 0 ∈ ℝ
28 3pos 12371 . . . . . . 7 0 < 3
2927, 26, 28ltleii 11384 . . . . . 6 0 ≤ 3
30 absid 15335 . . . . . 6 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
3126, 29, 30mp2an 692 . . . . 5 (abs‘3) = 3
3223, 25, 313eqtr3i 2773 . . . 4 (3 gcd (3 + 3)) = 3
3319, 21, 323eqtr3i 2773 . . 3 (6 gcd (3 + 6)) = 3
3412, 33eqtri 2765 . 2 (6 gcd 9) = 3
356, 34eqtri 2765 1 (-6 gcd 9) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158  cle 11296  -cneg 11493  3c3 12322  6c6 12325  9c9 12328  cz 12613  abscabs 15273   gcd cgcd 16531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532
This theorem is referenced by:  ex-lcm  30477
  Copyright terms: Public domain W3C validator