![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-gcd | Structured version Visualization version GIF version |
Description: Example for df-gcd 16443. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-gcd | ⊢ (-6 gcd 9) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 12308 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 12593 | . . 3 ⊢ 6 ∈ ℤ |
3 | 9nn 12317 | . . . 4 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 12593 | . . 3 ⊢ 9 ∈ ℤ |
5 | neggcd 16471 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
6 | 2, 4, 5 | mp2an 689 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
7 | 6cn 12310 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 3cn 12300 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 6p3e9 12379 | . . . . . 6 ⊢ (6 + 3) = 9 | |
10 | 7, 8, 9 | addcomli 11413 | . . . . 5 ⊢ (3 + 6) = 9 |
11 | 10 | eqcomi 2740 | . . . 4 ⊢ 9 = (3 + 6) |
12 | 11 | oveq2i 7423 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
13 | 3z 12602 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | gcdcom 16461 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
15 | 2, 13, 14 | mp2an 689 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
16 | 3p3e6 12371 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
17 | 16 | eqcomi 2740 | . . . . . 6 ⊢ 6 = (3 + 3) |
18 | 17 | oveq2i 7423 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
19 | 15, 18 | eqtri 2759 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
20 | gcdadd 16474 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
21 | 2, 13, 20 | mp2an 689 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
22 | gcdid 16475 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
24 | gcdadd 16474 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
25 | 13, 13, 24 | mp2an 689 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
26 | 3re 12299 | . . . . . 6 ⊢ 3 ∈ ℝ | |
27 | 0re 11223 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | 3pos 12324 | . . . . . . 7 ⊢ 0 < 3 | |
29 | 27, 26, 28 | ltleii 11344 | . . . . . 6 ⊢ 0 ≤ 3 |
30 | absid 15250 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
31 | 26, 29, 30 | mp2an 689 | . . . . 5 ⊢ (abs‘3) = 3 |
32 | 23, 25, 31 | 3eqtr3i 2767 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
33 | 19, 21, 32 | 3eqtr3i 2767 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
34 | 12, 33 | eqtri 2759 | . 2 ⊢ (6 gcd 9) = 3 |
35 | 6, 34 | eqtri 2759 | 1 ⊢ (-6 gcd 9) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 0cc0 11116 + caddc 11119 ≤ cle 11256 -cneg 11452 3c3 12275 6c6 12278 9c9 12281 ℤcz 12565 abscabs 15188 gcd cgcd 16442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-dvds 16205 df-gcd 16443 |
This theorem is referenced by: ex-lcm 30144 |
Copyright terms: Public domain | W3C validator |