Step | Hyp | Ref
| Expression |
1 | | gcdcl 16213 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
2 | 1 | nn0ge0d 12296 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ≤
(𝑀 gcd 𝑁)) |
3 | | gcddvds 16210 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) |
4 | | 3anass 1094 |
. . . . . . . 8
⊢ ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (𝑒 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈
ℤ))) |
5 | 4 | biancomi 463 |
. . . . . . 7
⊢ ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈
ℤ)) |
6 | | dvdsgcd 16252 |
. . . . . . 7
⊢ ((𝑒 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))) |
7 | 5, 6 | sylbir 234 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑒 ∈ ℤ) → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))) |
8 | 7 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∀𝑒 ∈ ℤ
((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))) |
9 | 2, 3, 8 | 3jca 1127 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤
(𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
10 | 9 | adantr 481 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
11 | | breq2 5078 |
. . . . 5
⊢ (𝐷 = (𝑀 gcd 𝑁) → (0 ≤ 𝐷 ↔ 0 ≤ (𝑀 gcd 𝑁))) |
12 | | breq1 5077 |
. . . . . 6
⊢ (𝐷 = (𝑀 gcd 𝑁) → (𝐷 ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀)) |
13 | | breq1 5077 |
. . . . . 6
⊢ (𝐷 = (𝑀 gcd 𝑁) → (𝐷 ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁)) |
14 | 12, 13 | anbi12d 631 |
. . . . 5
⊢ (𝐷 = (𝑀 gcd 𝑁) → ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))) |
15 | | breq2 5078 |
. . . . . . 7
⊢ (𝐷 = (𝑀 gcd 𝑁) → (𝑒 ∥ 𝐷 ↔ 𝑒 ∥ (𝑀 gcd 𝑁))) |
16 | 15 | imbi2d 341 |
. . . . . 6
⊢ (𝐷 = (𝑀 gcd 𝑁) → (((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
17 | 16 | ralbidv 3112 |
. . . . 5
⊢ (𝐷 = (𝑀 gcd 𝑁) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁)))) |
18 | 11, 14, 17 | 3anbi123d 1435 |
. . . 4
⊢ (𝐷 = (𝑀 gcd 𝑁) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) ↔ (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))) |
19 | 18 | adantl 482 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) ↔ (0 ≤ (𝑀 gcd 𝑁) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ (𝑀 gcd 𝑁))))) |
20 | 10, 19 | mpbird 256 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐷 = (𝑀 gcd 𝑁)) → (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) |
21 | | gcdval 16203 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
22 | 21 | adantr 481 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) |
23 | | iftrue 4465 |
. . . . . 6
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 0) |
24 | 23 | adantr 481 |
. . . . 5
⊢ (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 0) |
25 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑀 = 0 → (𝐷 ∥ 𝑀 ↔ 𝐷 ∥ 0)) |
26 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝐷 ∥ 𝑁 ↔ 𝐷 ∥ 0)) |
27 | 25, 26 | bi2anan9 636 |
. . . . . . . . 9
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ↔ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0))) |
28 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑀 = 0 → (𝑒 ∥ 𝑀 ↔ 𝑒 ∥ 0)) |
29 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑁 = 0 → (𝑒 ∥ 𝑁 ↔ 𝑒 ∥ 0)) |
30 | 28, 29 | bi2anan9 636 |
. . . . . . . . . . 11
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) ↔ (𝑒 ∥ 0 ∧ 𝑒 ∥ 0))) |
31 | 30 | imbi1d 342 |
. . . . . . . . . 10
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷))) |
32 | 31 | ralbidv 3112 |
. . . . . . . . 9
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷))) |
33 | 27, 32 | 3anbi23d 1438 |
. . . . . . . 8
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷)))) |
34 | | dvdszrcl 15968 |
. . . . . . . . . . 11
⊢ (𝐷 ∥ 0 → (𝐷 ∈ ℤ ∧ 0 ∈
ℤ)) |
35 | | dvds0 15981 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 ∈ ℤ → 𝑒 ∥ 0) |
36 | 35, 35 | jca 512 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 ∈ ℤ → (𝑒 ∥ 0 ∧ 𝑒 ∥ 0)) |
37 | 36 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) ∧ 𝑒 ∈ ℤ) → (𝑒 ∥ 0 ∧ 𝑒 ∥ 0)) |
38 | | pm5.5 362 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → (((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) ↔ 𝑒 ∥ 𝐷)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) ∧ 𝑒 ∈ ℤ) → (((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) ↔ 𝑒 ∥ 𝐷)) |
40 | 39 | ralbidva 3111 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) ↔ ∀𝑒 ∈ ℤ 𝑒 ∥ 𝐷)) |
41 | | 0z 12330 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℤ |
42 | | breq1 5077 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 0 → (𝑒 ∥ 𝐷 ↔ 0 ∥ 𝐷)) |
43 | 42 | rspcv 3557 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
ℤ → (∀𝑒
∈ ℤ 𝑒 ∥
𝐷 → 0 ∥ 𝐷)) |
44 | 41, 43 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑒 ∈
ℤ 𝑒 ∥ 𝐷 → 0 ∥ 𝐷) |
45 | | 0dvds 15986 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 ↔ 𝐷 = 0)) |
46 | 45 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 → 𝐷 = 0)) |
47 | | eqcom 2745 |
. . . . . . . . . . . . . . . . 17
⊢ (0 =
𝐷 ↔ 𝐷 = 0) |
48 | 46, 47 | syl6ibr 251 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 → 0 = 𝐷)) |
49 | 44, 48 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ ℤ →
(∀𝑒 ∈ ℤ
𝑒 ∥ 𝐷 → 0 = 𝐷)) |
50 | 49 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) → (∀𝑒 ∈ ℤ 𝑒 ∥ 𝐷 → 0 = 𝐷)) |
51 | 40, 50 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ ℤ ∧ 0 ≤
𝐷) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷)) |
52 | 51 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℤ → (0 ≤
𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
53 | 52 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ ℤ ∧ 0 ∈
ℤ) → (0 ≤ 𝐷
→ (∀𝑒 ∈
ℤ ((𝑒 ∥ 0 ∧
𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
54 | 34, 53 | syl 17 |
. . . . . . . . . 10
⊢ (𝐷 ∥ 0 → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
55 | 54 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐷 ∥ 0 ∧ 𝐷 ∥ 0) → (0 ≤ 𝐷 → (∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷) → 0 = 𝐷))) |
56 | 55 | 3imp21 1113 |
. . . . . . . 8
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 0 ∧ 𝐷 ∥ 0) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 0 ∧ 𝑒 ∥ 0) → 𝑒 ∥ 𝐷)) → 0 = 𝐷) |
57 | 33, 56 | syl6bi 252 |
. . . . . . 7
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → 0 = 𝐷)) |
58 | 57 | adantld 491 |
. . . . . 6
⊢ ((𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → 0 = 𝐷)) |
59 | 58 | imp 407 |
. . . . 5
⊢ (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → 0 = 𝐷) |
60 | 24, 59 | eqtrd 2778 |
. . . 4
⊢ (((𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
61 | | iffalse 4468 |
. . . . . 6
⊢ (¬
(𝑀 = 0 ∧ 𝑁 = 0) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) |
62 | 61 | adantr 481 |
. . . . 5
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) |
63 | | ltso 11055 |
. . . . . . 7
⊢ < Or
ℝ |
64 | 63 | a1i 11 |
. . . . . 6
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → < Or
ℝ) |
65 | | dvdszrcl 15968 |
. . . . . . . . . . 11
⊢ (𝐷 ∥ 𝑀 → (𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
66 | 65 | simpld 495 |
. . . . . . . . . 10
⊢ (𝐷 ∥ 𝑀 → 𝐷 ∈ ℤ) |
67 | 66 | zred 12426 |
. . . . . . . . 9
⊢ (𝐷 ∥ 𝑀 → 𝐷 ∈ ℝ) |
68 | 67 | adantr 481 |
. . . . . . . 8
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → 𝐷 ∈ ℝ) |
69 | 68 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → 𝐷 ∈ ℝ) |
70 | 69 | ad2antll 726 |
. . . . . 6
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → 𝐷 ∈ ℝ) |
71 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑦 → (𝑛 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀)) |
72 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑦 → (𝑛 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) |
73 | 71, 72 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑛 = 𝑦 → ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁) ↔ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁))) |
74 | 73 | elrab 3624 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ↔ (𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁))) |
75 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑦 → (𝑒 ∥ 𝑀 ↔ 𝑦 ∥ 𝑀)) |
76 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑒 = 𝑦 → (𝑒 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) |
77 | 75, 76 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑦 → ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) ↔ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁))) |
78 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑒 = 𝑦 → (𝑒 ∥ 𝐷 ↔ 𝑦 ∥ 𝐷)) |
79 | 77, 78 | imbi12d 345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑦 → (((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) ↔ ((𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁) → 𝑦 ∥ 𝐷))) |
80 | 79 | rspcv 3557 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℤ →
(∀𝑒 ∈ ℤ
((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → ((𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁) → 𝑦 ∥ 𝐷))) |
81 | 80 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℤ → ((𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → 𝑦 ∥ 𝐷))) |
82 | 81 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → 𝑦 ∥ 𝐷)) |
83 | 82 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → 𝑦 ∥ 𝐷)) |
84 | | elnn0z 12332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷 ∈ ℕ0
↔ (𝐷 ∈ ℤ
∧ 0 ≤ 𝐷)) |
85 | 84 | simplbi2 501 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ ℤ → (0 ≤
𝐷 → 𝐷 ∈
ℕ0)) |
86 | 85 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ≤
𝐷 → 𝐷 ∈
ℕ0)) |
87 | 65, 86 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∥ 𝑀 → (0 ≤ 𝐷 → 𝐷 ∈
ℕ0)) |
88 | 87 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → (0 ≤ 𝐷 → 𝐷 ∈
ℕ0)) |
89 | 88 | impcom 408 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈
ℕ0) |
90 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) → 𝑦 ∈ ℤ) |
91 | | elnn0 12235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐷 ∈ ℕ0
↔ (𝐷 ∈ ℕ
∨ 𝐷 =
0)) |
92 | | 2a1 28 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐷 ∈ ℕ → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
93 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝐷 = 0 → (𝐷 ∥ 𝑀 ↔ 0 ∥ 𝑀)) |
94 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝐷 = 0 → (𝐷 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
95 | 93, 94 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝐷 = 0 → ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ↔ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁))) |
96 | 95 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝐷 = 0 → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ↔ (0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))) |
97 | 96 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐷 = 0 ∧ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ↔ (0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)))) |
98 | | ianor 979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (¬
(𝑀 = 0 ∧ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∨ ¬ 𝑁 = 0)) |
99 | | dvdszrcl 15968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (0
∥ 𝑀 → (0 ∈
ℤ ∧ 𝑀 ∈
ℤ)) |
100 | | 0dvds 15986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 ↔ 𝑀 = 0)) |
101 | | pm2.24 124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑀 = 0 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ)) |
102 | 100, 101 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑀 ∈ ℤ → (0
∥ 𝑀 → (¬
𝑀 = 0 → 𝐷 ∈
ℕ))) |
103 | 102 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((0
∈ ℤ ∧ 𝑀
∈ ℤ) → (0 ∥ 𝑀 → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ))) |
104 | 99, 103 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (0
∥ 𝑀 → (¬
𝑀 = 0 → 𝐷 ∈
ℕ)) |
105 | 104 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((0
∥ 𝑀 ∧ 0 ∥
𝑁) → (¬ 𝑀 = 0 → 𝐷 ∈ ℕ)) |
106 | 105 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
𝑀 = 0 → ((0 ∥
𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
107 | | dvdszrcl 15968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (0
∥ 𝑁 → (0 ∈
ℤ ∧ 𝑁 ∈
ℤ)) |
108 | | 0dvds 15986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
109 | | pm2.24 124 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑁 = 0 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ)) |
110 | 108, 109 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 → (¬
𝑁 = 0 → 𝐷 ∈
ℕ))) |
111 | 110 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 ∥ 𝑁 → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ))) |
112 | 107, 111 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (0
∥ 𝑁 → (¬
𝑁 = 0 → 𝐷 ∈
ℕ)) |
113 | 112 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((0
∥ 𝑀 ∧ 0 ∥
𝑁) → (¬ 𝑁 = 0 → 𝐷 ∈ ℕ)) |
114 | 113 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (¬
𝑁 = 0 → ((0 ∥
𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
115 | 106, 114 | jaoi 854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((¬
𝑀 = 0 ∨ ¬ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
116 | 98, 115 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
(𝑀 = 0 ∧ 𝑁 = 0) → ((0 ∥ 𝑀 ∧ 0 ∥ 𝑁) → 𝐷 ∈ ℕ)) |
117 | 116 | adantld 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (¬
(𝑀 = 0 ∧ 𝑁 = 0) → ((0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
118 | 117 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐷 = 0 ∧ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) → ((0 ≤ 𝐷 ∧ (0 ∥ 𝑀 ∧ 0 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
119 | 97, 118 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐷 = 0 ∧ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
120 | 119 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐷 = 0 → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
121 | 92, 120 | jaoi 854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐷 ∈ ℕ ∨ 𝐷 = 0) → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
122 | 91, 121 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐷 ∈ ℕ0
→ (((𝑦 ∈ ℤ
∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ))) |
123 | 122 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝐷 ∈ ℕ0) → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → 𝐷 ∈ ℕ)) |
124 | 123 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) → 𝐷 ∈ ℕ) |
125 | | dvdsle 16019 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)) |
126 | 90, 124, 125 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑦 ∈
ℤ ∧ (𝑦 ∥
𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ 𝐷 ∈ ℕ0) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)) |
127 | 126 | exp31 420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝐷 ∈ ℕ0 → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (𝑦 ∥ 𝐷 → 𝑦 ≤ 𝐷)))) |
128 | 127 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∥ 𝐷 → (𝐷 ∈ ℕ0 → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑦 ≤ 𝐷)))) |
129 | 128 | imp 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0) → ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑦 ≤ 𝐷))) |
130 | 129 | impcom 408 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) →
(((𝑦 ∈ ℤ ∧
(𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑦 ≤ 𝐷)) |
131 | 130 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) → 𝑦 ≤ 𝐷) |
132 | | zre 12323 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
133 | 132 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑦 ∈ ℝ) |
134 | 68 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) → 𝐷 ∈
ℝ) |
135 | | lenlt 11053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦)) |
136 | 133, 134,
135 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) → (𝑦 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑦)) |
137 | 131, 136 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((0
≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) ∧ (𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0)) ∧ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) → ¬ 𝐷 < 𝑦) |
138 | 137 | exp31 420 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ((𝑦 ∥ 𝐷 ∧ 𝐷 ∈ ℕ0) → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ¬ 𝐷 < 𝑦))) |
139 | 89, 138 | mpan2d 691 |
. . . . . . . . . . . . . . . 16
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (𝑦 ∥ 𝐷 → (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ¬ 𝐷 < 𝑦))) |
140 | 139 | com13 88 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑦 ∥ 𝐷 → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ¬ 𝐷 < 𝑦))) |
141 | 140 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑦 ∥ 𝐷 → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ¬ 𝐷 < 𝑦))) |
142 | 83, 141 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → ¬ 𝐷 < 𝑦))) |
143 | 142 | com13 88 |
. . . . . . . . . . . 12
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁)) → (∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦))) |
144 | 143 | 3impia 1116 |
. . . . . . . . . . 11
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ¬ 𝐷 < 𝑦)) |
145 | 144 | com12 32 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → ¬ 𝐷 < 𝑦)) |
146 | 145 | expimpd 454 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → ¬ 𝐷 < 𝑦)) |
147 | 146 | expimpd 454 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤ ∧ (𝑦 ∥ 𝑀 ∧ 𝑦 ∥ 𝑁)) → ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → ¬ 𝐷 < 𝑦)) |
148 | 74, 147 | sylbi 216 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} → ((¬ (𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → ¬ 𝐷 < 𝑦)) |
149 | 148 | impcom 408 |
. . . . . 6
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) → ¬ 𝐷 < 𝑦) |
150 | 66 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → 𝐷 ∈ ℤ) |
151 | 150 | ancri 550 |
. . . . . . . . . . 11
⊢ ((𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
152 | 151 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
153 | 152 | ad2antll 726 |
. . . . . . . . 9
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
154 | 153 | adantr 481 |
. . . . . . . 8
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
155 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐷 → (𝑛 ∥ 𝑀 ↔ 𝐷 ∥ 𝑀)) |
156 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐷 → (𝑛 ∥ 𝑁 ↔ 𝐷 ∥ 𝑁)) |
157 | 155, 156 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑛 = 𝐷 → ((𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁) ↔ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
158 | 157 | elrab 3624 |
. . . . . . . 8
⊢ (𝐷 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)} ↔ (𝐷 ∈ ℤ ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁))) |
159 | 154, 158 | sylibr 233 |
. . . . . . 7
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → 𝐷 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}) |
160 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑧 = 𝐷 → (𝑦 < 𝑧 ↔ 𝑦 < 𝐷)) |
161 | 160 | adantl 482 |
. . . . . . 7
⊢ ((((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) ∧ 𝑧 = 𝐷) → (𝑦 < 𝑧 ↔ 𝑦 < 𝐷)) |
162 | | simprr 770 |
. . . . . . 7
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → 𝑦 < 𝐷) |
163 | 159, 161,
162 | rspcedvd 3563 |
. . . . . 6
⊢ (((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) ∧ (𝑦 ∈ ℝ ∧ 𝑦 < 𝐷)) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}𝑦 < 𝑧) |
164 | 64, 70, 149, 163 | eqsupd 9216 |
. . . . 5
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ) = 𝐷) |
165 | 62, 164 | eqtrd 2778 |
. . . 4
⊢ ((¬
(𝑀 = 0 ∧ 𝑁 = 0) ∧ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
166 | 60, 165 | pm2.61ian 809 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) = 𝐷) |
167 | 22, 166 | eqtr2d 2779 |
. 2
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (0 ≤
𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷))) → 𝐷 = (𝑀 gcd 𝑁)) |
168 | 20, 167 | impbida 798 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) |