Step | Hyp | Ref
| Expression |
1 | | cgs 30012 |
. 2
class
/π |
2 | | vg |
. . 3
setvar π |
3 | | cgr 30009 |
. . 3
class
GrpOp |
4 | | vx |
. . . 4
setvar π₯ |
5 | | vy |
. . . 4
setvar π¦ |
6 | 2 | cv 1538 |
. . . . 5
class π |
7 | 6 | crn 5676 |
. . . 4
class ran π |
8 | 4 | cv 1538 |
. . . . 5
class π₯ |
9 | 5 | cv 1538 |
. . . . . 6
class π¦ |
10 | | cgn 30011 |
. . . . . . 7
class
inv |
11 | 6, 10 | cfv 6542 |
. . . . . 6
class
(invβπ) |
12 | 9, 11 | cfv 6542 |
. . . . 5
class
((invβπ)βπ¦) |
13 | 8, 12, 6 | co 7411 |
. . . 4
class (π₯π((invβπ)βπ¦)) |
14 | 4, 5, 7, 7, 13 | cmpo 7413 |
. . 3
class (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦))) |
15 | 2, 3, 14 | cmpt 5230 |
. 2
class (π β GrpOp β¦ (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦)))) |
16 | 1, 15 | wceq 1539 |
1
wff
/π = (π
β GrpOp β¦ (π₯
β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦)))) |