Detailed syntax breakdown of Definition df-gdiv
Step | Hyp | Ref
| Expression |
1 | | cgs 28863 |
. 2
class
/𝑔 |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cgr 28860 |
. . 3
class
GrpOp |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | vy |
. . . 4
setvar 𝑦 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑔 |
7 | 6 | crn 5591 |
. . . 4
class ran 𝑔 |
8 | 4 | cv 1538 |
. . . . 5
class 𝑥 |
9 | 5 | cv 1538 |
. . . . . 6
class 𝑦 |
10 | | cgn 28862 |
. . . . . . 7
class
inv |
11 | 6, 10 | cfv 6437 |
. . . . . 6
class
(inv‘𝑔) |
12 | 9, 11 | cfv 6437 |
. . . . 5
class
((inv‘𝑔)‘𝑦) |
13 | 8, 12, 6 | co 7284 |
. . . 4
class (𝑥𝑔((inv‘𝑔)‘𝑦)) |
14 | 4, 5, 7, 7, 13 | cmpo 7286 |
. . 3
class (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) |
15 | 2, 3, 14 | cmpt 5158 |
. 2
class (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) |
16 | 1, 15 | wceq 1539 |
1
wff
/𝑔 = (𝑔
∈ GrpOp ↦ (𝑥
∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) |