MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivfval Structured version   Visualization version   GIF version

Theorem grpodivfval 30512
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivfval (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem grpodivfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpdiv.3 . 2 𝐷 = ( /𝑔𝐺)
2 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7832 . . . . 5 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
42, 3eqeltrid 2835 . . . 4 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
5 mpoexga 8009 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) ∈ V)
64, 4, 5syl2anc 584 . . 3 (𝐺 ∈ GrpOp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) ∈ V)
7 rneq 5876 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2784 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
9 id 22 . . . . . 6 (𝑔 = 𝐺𝑔 = 𝐺)
10 eqidd 2732 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
11 fveq2 6822 . . . . . . . 8 (𝑔 = 𝐺 → (inv‘𝑔) = (inv‘𝐺))
12 grpdiv.2 . . . . . . . 8 𝑁 = (inv‘𝐺)
1311, 12eqtr4di 2784 . . . . . . 7 (𝑔 = 𝐺 → (inv‘𝑔) = 𝑁)
1413fveq1d 6824 . . . . . 6 (𝑔 = 𝐺 → ((inv‘𝑔)‘𝑦) = (𝑁𝑦))
159, 10, 14oveq123d 7367 . . . . 5 (𝑔 = 𝐺 → (𝑥𝑔((inv‘𝑔)‘𝑦)) = (𝑥𝐺(𝑁𝑦)))
168, 8, 15mpoeq123dv 7421 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
17 df-gdiv 30474 . . . 4 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
1816, 17fvmptg 6927 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) ∈ V) → ( /𝑔𝐺) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
196, 18mpdan 687 . 2 (𝐺 ∈ GrpOp → ( /𝑔𝐺) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
201, 19eqtrid 2778 1 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  GrpOpcgr 30467  invcgn 30469   /𝑔 cgs 30470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-gdiv 30474
This theorem is referenced by:  grpodivval  30513  grpodivf  30516  nvmfval  30622
  Copyright terms: Public domain W3C validator