![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivfval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | β’ π = ran πΊ |
grpdiv.2 | β’ π = (invβπΊ) |
grpdiv.3 | β’ π· = ( /π βπΊ) |
Ref | Expression |
---|---|
grpodivfval | β’ (πΊ β GrpOp β π· = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.3 | . 2 β’ π· = ( /π βπΊ) | |
2 | grpdiv.1 | . . . . 5 β’ π = ran πΊ | |
3 | rnexg 7906 | . . . . 5 β’ (πΊ β GrpOp β ran πΊ β V) | |
4 | 2, 3 | eqeltrid 2829 | . . . 4 β’ (πΊ β GrpOp β π β V) |
5 | mpoexga 8078 | . . . 4 β’ ((π β V β§ π β V) β (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) | |
6 | 4, 4, 5 | syl2anc 582 | . . 3 β’ (πΊ β GrpOp β (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) |
7 | rneq 5932 | . . . . . 6 β’ (π = πΊ β ran π = ran πΊ) | |
8 | 7, 2 | eqtr4di 2783 | . . . . 5 β’ (π = πΊ β ran π = π) |
9 | id 22 | . . . . . 6 β’ (π = πΊ β π = πΊ) | |
10 | eqidd 2726 | . . . . . 6 β’ (π = πΊ β π₯ = π₯) | |
11 | fveq2 6891 | . . . . . . . 8 β’ (π = πΊ β (invβπ) = (invβπΊ)) | |
12 | grpdiv.2 | . . . . . . . 8 β’ π = (invβπΊ) | |
13 | 11, 12 | eqtr4di 2783 | . . . . . . 7 β’ (π = πΊ β (invβπ) = π) |
14 | 13 | fveq1d 6893 | . . . . . 6 β’ (π = πΊ β ((invβπ)βπ¦) = (πβπ¦)) |
15 | 9, 10, 14 | oveq123d 7436 | . . . . 5 β’ (π = πΊ β (π₯π((invβπ)βπ¦)) = (π₯πΊ(πβπ¦))) |
16 | 8, 8, 15 | mpoeq123dv 7491 | . . . 4 β’ (π = πΊ β (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦))) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
17 | df-gdiv 30348 | . . . 4 β’ /π = (π β GrpOp β¦ (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦)))) | |
18 | 16, 17 | fvmptg 6997 | . . 3 β’ ((πΊ β GrpOp β§ (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) β ( /π βπΊ) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
19 | 6, 18 | mpdan 685 | . 2 β’ (πΊ β GrpOp β ( /π βπΊ) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
20 | 1, 19 | eqtrid 2777 | 1 β’ (πΊ β GrpOp β π· = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 ran crn 5673 βcfv 6542 (class class class)co 7415 β cmpo 7417 GrpOpcgr 30341 invcgn 30343 /π cgs 30344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-gdiv 30348 |
This theorem is referenced by: grpodivval 30387 grpodivf 30390 nvmfval 30496 |
Copyright terms: Public domain | W3C validator |