![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivfval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivfval | ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.3 | . 2 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
2 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | rnexg 7942 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
4 | 2, 3 | eqeltrid 2848 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
5 | mpoexga 8118 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) | |
6 | 4, 4, 5 | syl2anc 583 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) |
7 | rneq 5961 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
8 | 7, 2 | eqtr4di 2798 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
9 | id 22 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑔 = 𝐺) | |
10 | eqidd 2741 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
11 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (inv‘𝑔) = (inv‘𝐺)) | |
12 | grpdiv.2 | . . . . . . . 8 ⊢ 𝑁 = (inv‘𝐺) | |
13 | 11, 12 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (inv‘𝑔) = 𝑁) |
14 | 13 | fveq1d 6922 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((inv‘𝑔)‘𝑦) = (𝑁‘𝑦)) |
15 | 9, 10, 14 | oveq123d 7469 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥𝑔((inv‘𝑔)‘𝑦)) = (𝑥𝐺(𝑁‘𝑦))) |
16 | 8, 8, 15 | mpoeq123dv 7525 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
17 | df-gdiv 30528 | . . . 4 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
18 | 16, 17 | fvmptg 7027 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) → ( /𝑔 ‘𝐺) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
19 | 6, 18 | mpdan 686 | . 2 ⊢ (𝐺 ∈ GrpOp → ( /𝑔 ‘𝐺) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
20 | 1, 19 | eqtrid 2792 | 1 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 GrpOpcgr 30521 invcgn 30523 /𝑔 cgs 30524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-gdiv 30528 |
This theorem is referenced by: grpodivval 30567 grpodivf 30570 nvmfval 30676 |
Copyright terms: Public domain | W3C validator |