![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivfval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | β’ π = ran πΊ |
grpdiv.2 | β’ π = (invβπΊ) |
grpdiv.3 | β’ π· = ( /π βπΊ) |
Ref | Expression |
---|---|
grpodivfval | β’ (πΊ β GrpOp β π· = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.3 | . 2 β’ π· = ( /π βπΊ) | |
2 | grpdiv.1 | . . . . 5 β’ π = ran πΊ | |
3 | rnexg 7895 | . . . . 5 β’ (πΊ β GrpOp β ran πΊ β V) | |
4 | 2, 3 | eqeltrid 2838 | . . . 4 β’ (πΊ β GrpOp β π β V) |
5 | mpoexga 8064 | . . . 4 β’ ((π β V β§ π β V) β (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) | |
6 | 4, 4, 5 | syl2anc 585 | . . 3 β’ (πΊ β GrpOp β (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) |
7 | rneq 5936 | . . . . . 6 β’ (π = πΊ β ran π = ran πΊ) | |
8 | 7, 2 | eqtr4di 2791 | . . . . 5 β’ (π = πΊ β ran π = π) |
9 | id 22 | . . . . . 6 β’ (π = πΊ β π = πΊ) | |
10 | eqidd 2734 | . . . . . 6 β’ (π = πΊ β π₯ = π₯) | |
11 | fveq2 6892 | . . . . . . . 8 β’ (π = πΊ β (invβπ) = (invβπΊ)) | |
12 | grpdiv.2 | . . . . . . . 8 β’ π = (invβπΊ) | |
13 | 11, 12 | eqtr4di 2791 | . . . . . . 7 β’ (π = πΊ β (invβπ) = π) |
14 | 13 | fveq1d 6894 | . . . . . 6 β’ (π = πΊ β ((invβπ)βπ¦) = (πβπ¦)) |
15 | 9, 10, 14 | oveq123d 7430 | . . . . 5 β’ (π = πΊ β (π₯π((invβπ)βπ¦)) = (π₯πΊ(πβπ¦))) |
16 | 8, 8, 15 | mpoeq123dv 7484 | . . . 4 β’ (π = πΊ β (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦))) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
17 | df-gdiv 29749 | . . . 4 β’ /π = (π β GrpOp β¦ (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦)))) | |
18 | 16, 17 | fvmptg 6997 | . . 3 β’ ((πΊ β GrpOp β§ (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) β ( /π βπΊ) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
19 | 6, 18 | mpdan 686 | . 2 β’ (πΊ β GrpOp β ( /π βπΊ) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
20 | 1, 19 | eqtrid 2785 | 1 β’ (πΊ β GrpOp β π· = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 ran crn 5678 βcfv 6544 (class class class)co 7409 β cmpo 7411 GrpOpcgr 29742 invcgn 29744 /π cgs 29745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-gdiv 29749 |
This theorem is referenced by: grpodivval 29788 grpodivf 29791 nvmfval 29897 |
Copyright terms: Public domain | W3C validator |