MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivfval Structured version   Visualization version   GIF version

Theorem grpodivfval 29787
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (invβ€˜πΊ)
grpdiv.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpodivfval (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
Distinct variable groups:   π‘₯,𝑦,𝐺   π‘₯,𝑁,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐷(π‘₯,𝑦)

Proof of Theorem grpodivfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpdiv.3 . 2 𝐷 = ( /𝑔 β€˜πΊ)
2 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7895 . . . . 5 (𝐺 ∈ GrpOp β†’ ran 𝐺 ∈ V)
42, 3eqeltrid 2838 . . . 4 (𝐺 ∈ GrpOp β†’ 𝑋 ∈ V)
5 mpoexga 8064 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) ∈ V)
64, 4, 5syl2anc 585 . . 3 (𝐺 ∈ GrpOp β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) ∈ V)
7 rneq 5936 . . . . . 6 (𝑔 = 𝐺 β†’ ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2791 . . . . 5 (𝑔 = 𝐺 β†’ ran 𝑔 = 𝑋)
9 id 22 . . . . . 6 (𝑔 = 𝐺 β†’ 𝑔 = 𝐺)
10 eqidd 2734 . . . . . 6 (𝑔 = 𝐺 β†’ π‘₯ = π‘₯)
11 fveq2 6892 . . . . . . . 8 (𝑔 = 𝐺 β†’ (invβ€˜π‘”) = (invβ€˜πΊ))
12 grpdiv.2 . . . . . . . 8 𝑁 = (invβ€˜πΊ)
1311, 12eqtr4di 2791 . . . . . . 7 (𝑔 = 𝐺 β†’ (invβ€˜π‘”) = 𝑁)
1413fveq1d 6894 . . . . . 6 (𝑔 = 𝐺 β†’ ((invβ€˜π‘”)β€˜π‘¦) = (π‘β€˜π‘¦))
159, 10, 14oveq123d 7430 . . . . 5 (𝑔 = 𝐺 β†’ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦)) = (π‘₯𝐺(π‘β€˜π‘¦)))
168, 8, 15mpoeq123dv 7484 . . . 4 (𝑔 = 𝐺 β†’ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
17 df-gdiv 29749 . . . 4 /𝑔 = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))))
1816, 17fvmptg 6997 . . 3 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) ∈ V) β†’ ( /𝑔 β€˜πΊ) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
196, 18mpdan 686 . 2 (𝐺 ∈ GrpOp β†’ ( /𝑔 β€˜πΊ) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
201, 19eqtrid 2785 1 (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Vcvv 3475  ran crn 5678  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  GrpOpcgr 29742  invcgn 29744   /𝑔 cgs 29745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-gdiv 29749
This theorem is referenced by:  grpodivval  29788  grpodivf  29791  nvmfval  29897
  Copyright terms: Public domain W3C validator