MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivfval Structured version   Visualization version   GIF version

Theorem grpodivfval 30318
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (invβ€˜πΊ)
grpdiv.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpodivfval (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
Distinct variable groups:   π‘₯,𝑦,𝐺   π‘₯,𝑁,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐷(π‘₯,𝑦)

Proof of Theorem grpodivfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpdiv.3 . 2 𝐷 = ( /𝑔 β€˜πΊ)
2 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7902 . . . . 5 (𝐺 ∈ GrpOp β†’ ran 𝐺 ∈ V)
42, 3eqeltrid 2832 . . . 4 (𝐺 ∈ GrpOp β†’ 𝑋 ∈ V)
5 mpoexga 8074 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) ∈ V)
64, 4, 5syl2anc 583 . . 3 (𝐺 ∈ GrpOp β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) ∈ V)
7 rneq 5932 . . . . . 6 (𝑔 = 𝐺 β†’ ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2785 . . . . 5 (𝑔 = 𝐺 β†’ ran 𝑔 = 𝑋)
9 id 22 . . . . . 6 (𝑔 = 𝐺 β†’ 𝑔 = 𝐺)
10 eqidd 2728 . . . . . 6 (𝑔 = 𝐺 β†’ π‘₯ = π‘₯)
11 fveq2 6891 . . . . . . . 8 (𝑔 = 𝐺 β†’ (invβ€˜π‘”) = (invβ€˜πΊ))
12 grpdiv.2 . . . . . . . 8 𝑁 = (invβ€˜πΊ)
1311, 12eqtr4di 2785 . . . . . . 7 (𝑔 = 𝐺 β†’ (invβ€˜π‘”) = 𝑁)
1413fveq1d 6893 . . . . . 6 (𝑔 = 𝐺 β†’ ((invβ€˜π‘”)β€˜π‘¦) = (π‘β€˜π‘¦))
159, 10, 14oveq123d 7435 . . . . 5 (𝑔 = 𝐺 β†’ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦)) = (π‘₯𝐺(π‘β€˜π‘¦)))
168, 8, 15mpoeq123dv 7489 . . . 4 (𝑔 = 𝐺 β†’ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
17 df-gdiv 30280 . . . 4 /𝑔 = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (π‘₯𝑔((invβ€˜π‘”)β€˜π‘¦))))
1816, 17fvmptg 6997 . . 3 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))) ∈ V) β†’ ( /𝑔 β€˜πΊ) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
196, 18mpdan 686 . 2 (𝐺 ∈ GrpOp β†’ ( /𝑔 β€˜πΊ) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
201, 19eqtrid 2779 1 (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺(π‘β€˜π‘¦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099  Vcvv 3469  ran crn 5673  β€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416  GrpOpcgr 30273  invcgn 30275   /𝑔 cgs 30276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-gdiv 30280
This theorem is referenced by:  grpodivval  30319  grpodivf  30322  nvmfval  30428
  Copyright terms: Public domain W3C validator