![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivfval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivfval | ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.3 | . 2 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
2 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | rnexg 7915 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
4 | 2, 3 | eqeltrid 2830 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
5 | mpoexga 8091 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) | |
6 | 4, 4, 5 | syl2anc 582 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) |
7 | rneq 5942 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
8 | 7, 2 | eqtr4di 2784 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
9 | id 22 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑔 = 𝐺) | |
10 | eqidd 2727 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
11 | fveq2 6901 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (inv‘𝑔) = (inv‘𝐺)) | |
12 | grpdiv.2 | . . . . . . . 8 ⊢ 𝑁 = (inv‘𝐺) | |
13 | 11, 12 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (inv‘𝑔) = 𝑁) |
14 | 13 | fveq1d 6903 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((inv‘𝑔)‘𝑦) = (𝑁‘𝑦)) |
15 | 9, 10, 14 | oveq123d 7445 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥𝑔((inv‘𝑔)‘𝑦)) = (𝑥𝐺(𝑁‘𝑦))) |
16 | 8, 8, 15 | mpoeq123dv 7500 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
17 | df-gdiv 30429 | . . . 4 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
18 | 16, 17 | fvmptg 7007 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) → ( /𝑔 ‘𝐺) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
19 | 6, 18 | mpdan 685 | . 2 ⊢ (𝐺 ∈ GrpOp → ( /𝑔 ‘𝐺) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
20 | 1, 19 | eqtrid 2778 | 1 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ran crn 5683 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 GrpOpcgr 30422 invcgn 30424 /𝑔 cgs 30425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-gdiv 30429 |
This theorem is referenced by: grpodivval 30468 grpodivf 30471 nvmfval 30577 |
Copyright terms: Public domain | W3C validator |