| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivfval | Structured version Visualization version GIF version | ||
| Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivfval | ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.3 | . 2 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 2 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 3 | rnexg 7878 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
| 4 | 2, 3 | eqeltrid 2832 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
| 5 | mpoexga 8056 | . . . 4 ⊢ ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) | |
| 6 | 4, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) |
| 7 | rneq 5900 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
| 8 | 7, 2 | eqtr4di 2782 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
| 9 | id 22 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑔 = 𝐺) | |
| 10 | eqidd 2730 | . . . . . 6 ⊢ (𝑔 = 𝐺 → 𝑥 = 𝑥) | |
| 11 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (inv‘𝑔) = (inv‘𝐺)) | |
| 12 | grpdiv.2 | . . . . . . . 8 ⊢ 𝑁 = (inv‘𝐺) | |
| 13 | 11, 12 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (inv‘𝑔) = 𝑁) |
| 14 | 13 | fveq1d 6860 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((inv‘𝑔)‘𝑦) = (𝑁‘𝑦)) |
| 15 | 9, 10, 14 | oveq123d 7408 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥𝑔((inv‘𝑔)‘𝑦)) = (𝑥𝐺(𝑁‘𝑦))) |
| 16 | 8, 8, 15 | mpoeq123dv 7464 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| 17 | df-gdiv 30425 | . . . 4 ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) | |
| 18 | 16, 17 | fvmptg 6966 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦))) ∈ V) → ( /𝑔 ‘𝐺) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| 19 | 6, 18 | mpdan 687 | . 2 ⊢ (𝐺 ∈ GrpOp → ( /𝑔 ‘𝐺) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| 20 | 1, 19 | eqtrid 2776 | 1 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(𝑁‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 GrpOpcgr 30418 invcgn 30420 /𝑔 cgs 30421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-gdiv 30425 |
| This theorem is referenced by: grpodivval 30464 grpodivf 30467 nvmfval 30573 |
| Copyright terms: Public domain | W3C validator |