![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivfval | Structured version Visualization version GIF version |
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdiv.1 | β’ π = ran πΊ |
grpdiv.2 | β’ π = (invβπΊ) |
grpdiv.3 | β’ π· = ( /π βπΊ) |
Ref | Expression |
---|---|
grpodivfval | β’ (πΊ β GrpOp β π· = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdiv.3 | . 2 β’ π· = ( /π βπΊ) | |
2 | grpdiv.1 | . . . . 5 β’ π = ran πΊ | |
3 | rnexg 7902 | . . . . 5 β’ (πΊ β GrpOp β ran πΊ β V) | |
4 | 2, 3 | eqeltrid 2832 | . . . 4 β’ (πΊ β GrpOp β π β V) |
5 | mpoexga 8074 | . . . 4 β’ ((π β V β§ π β V) β (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) | |
6 | 4, 4, 5 | syl2anc 583 | . . 3 β’ (πΊ β GrpOp β (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) |
7 | rneq 5932 | . . . . . 6 β’ (π = πΊ β ran π = ran πΊ) | |
8 | 7, 2 | eqtr4di 2785 | . . . . 5 β’ (π = πΊ β ran π = π) |
9 | id 22 | . . . . . 6 β’ (π = πΊ β π = πΊ) | |
10 | eqidd 2728 | . . . . . 6 β’ (π = πΊ β π₯ = π₯) | |
11 | fveq2 6891 | . . . . . . . 8 β’ (π = πΊ β (invβπ) = (invβπΊ)) | |
12 | grpdiv.2 | . . . . . . . 8 β’ π = (invβπΊ) | |
13 | 11, 12 | eqtr4di 2785 | . . . . . . 7 β’ (π = πΊ β (invβπ) = π) |
14 | 13 | fveq1d 6893 | . . . . . 6 β’ (π = πΊ β ((invβπ)βπ¦) = (πβπ¦)) |
15 | 9, 10, 14 | oveq123d 7435 | . . . . 5 β’ (π = πΊ β (π₯π((invβπ)βπ¦)) = (π₯πΊ(πβπ¦))) |
16 | 8, 8, 15 | mpoeq123dv 7489 | . . . 4 β’ (π = πΊ β (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦))) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
17 | df-gdiv 30280 | . . . 4 β’ /π = (π β GrpOp β¦ (π₯ β ran π, π¦ β ran π β¦ (π₯π((invβπ)βπ¦)))) | |
18 | 16, 17 | fvmptg 6997 | . . 3 β’ ((πΊ β GrpOp β§ (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦))) β V) β ( /π βπΊ) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
19 | 6, 18 | mpdan 686 | . 2 β’ (πΊ β GrpOp β ( /π βπΊ) = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
20 | 1, 19 | eqtrid 2779 | 1 β’ (πΊ β GrpOp β π· = (π₯ β π, π¦ β π β¦ (π₯πΊ(πβπ¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 Vcvv 3469 ran crn 5673 βcfv 6542 (class class class)co 7414 β cmpo 7416 GrpOpcgr 30273 invcgn 30275 /π cgs 30276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-gdiv 30280 |
This theorem is referenced by: grpodivval 30319 grpodivf 30322 nvmfval 30428 |
Copyright terms: Public domain | W3C validator |