Detailed syntax breakdown of Definition df-ginv
| Step | Hyp | Ref
| Expression |
| 1 | | cgn 30510 |
. 2
class
inv |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cgr 30508 |
. . 3
class
GrpOp |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 6 | 5 | crn 5686 |
. . . 4
class ran 𝑔 |
| 7 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 9 | 4 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 10 | 8, 9, 5 | co 7431 |
. . . . . 6
class (𝑧𝑔𝑥) |
| 11 | | cgi 30509 |
. . . . . . 7
class
GId |
| 12 | 5, 11 | cfv 6561 |
. . . . . 6
class
(GId‘𝑔) |
| 13 | 10, 12 | wceq 1540 |
. . . . 5
wff (𝑧𝑔𝑥) = (GId‘𝑔) |
| 14 | 13, 7, 6 | crio 7387 |
. . . 4
class
(℩𝑧
∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)) |
| 15 | 4, 6, 14 | cmpt 5225 |
. . 3
class (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔))) |
| 16 | 2, 3, 15 | cmpt 5225 |
. 2
class (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) |
| 17 | 1, 16 | wceq 1540 |
1
wff inv =
(𝑔 ∈ GrpOp ↦
(𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) |