Detailed syntax breakdown of Definition df-ginv
Step | Hyp | Ref
| Expression |
1 | | cgn 28862 |
. 2
class
inv |
2 | | vg |
. . 3
setvar 𝑔 |
3 | | cgr 28860 |
. . 3
class
GrpOp |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑔 |
6 | 5 | crn 5591 |
. . . 4
class ran 𝑔 |
7 | | vz |
. . . . . . . 8
setvar 𝑧 |
8 | 7 | cv 1538 |
. . . . . . 7
class 𝑧 |
9 | 4 | cv 1538 |
. . . . . . 7
class 𝑥 |
10 | 8, 9, 5 | co 7284 |
. . . . . 6
class (𝑧𝑔𝑥) |
11 | | cgi 28861 |
. . . . . . 7
class
GId |
12 | 5, 11 | cfv 6437 |
. . . . . 6
class
(GId‘𝑔) |
13 | 10, 12 | wceq 1539 |
. . . . 5
wff (𝑧𝑔𝑥) = (GId‘𝑔) |
14 | 13, 7, 6 | crio 7240 |
. . . 4
class
(℩𝑧
∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)) |
15 | 4, 6, 14 | cmpt 5158 |
. . 3
class (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔))) |
16 | 2, 3, 15 | cmpt 5158 |
. 2
class (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) |
17 | 1, 16 | wceq 1539 |
1
wff inv =
(𝑔 ∈ GrpOp ↦
(𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) |