Detailed syntax breakdown of Definition df-ghomOLD
| Step | Hyp | Ref
| Expression |
| 1 | | cghomOLD 37890 |
. 2
class
GrpOpHom |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vh |
. . 3
setvar ℎ |
| 4 | | cgr 30508 |
. . 3
class
GrpOp |
| 5 | 2 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 6 | 5 | crn 5686 |
. . . . . 6
class ran 𝑔 |
| 7 | 3 | cv 1539 |
. . . . . . 7
class ℎ |
| 8 | 7 | crn 5686 |
. . . . . 6
class ran ℎ |
| 9 | | vf |
. . . . . . 7
setvar 𝑓 |
| 10 | 9 | cv 1539 |
. . . . . 6
class 𝑓 |
| 11 | 6, 8, 10 | wf 6557 |
. . . . 5
wff 𝑓:ran 𝑔⟶ran ℎ |
| 12 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 13 | 12 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 14 | 13, 10 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 15 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 16 | 15 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 17 | 16, 10 | cfv 6561 |
. . . . . . . . 9
class (𝑓‘𝑦) |
| 18 | 14, 17, 7 | co 7431 |
. . . . . . . 8
class ((𝑓‘𝑥)ℎ(𝑓‘𝑦)) |
| 19 | 13, 16, 5 | co 7431 |
. . . . . . . . 9
class (𝑥𝑔𝑦) |
| 20 | 19, 10 | cfv 6561 |
. . . . . . . 8
class (𝑓‘(𝑥𝑔𝑦)) |
| 21 | 18, 20 | wceq 1540 |
. . . . . . 7
wff ((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)) |
| 22 | 21, 15, 6 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈ ran
𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)) |
| 23 | 22, 12, 6 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈ ran
𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)) |
| 24 | 11, 23 | wa 395 |
. . . 4
wff (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦))) |
| 25 | 24, 9 | cab 2714 |
. . 3
class {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))} |
| 26 | 2, 3, 4, 4, 25 | cmpo 7433 |
. 2
class (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) |
| 27 | 1, 26 | wceq 1540 |
1
wff GrpOpHom =
(𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) |