Step | Hyp | Ref
| Expression |
1 | | rnexg 7725 |
. . 3
⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) |
2 | | rnexg 7725 |
. . 3
⊢ (𝐻 ∈ GrpOp → ran 𝐻 ∈ V) |
3 | | elghomlem1OLD.1 |
. . . 4
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} |
4 | 3 | fabexg 7755 |
. . 3
⊢ ((ran
𝐺 ∈ V ∧ ran 𝐻 ∈ V) → 𝑆 ∈ V) |
5 | 1, 2, 4 | syl2an 595 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → 𝑆 ∈ V) |
6 | | rneq 5834 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) |
7 | 6 | feq2d 6570 |
. . . . 5
⊢ (𝑔 = 𝐺 → (𝑓:ran 𝑔⟶ran ℎ ↔ 𝑓:ran 𝐺⟶ran ℎ)) |
8 | | oveq 7261 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
9 | 8 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑓‘(𝑥𝑔𝑦)) = (𝑓‘(𝑥𝐺𝑦))) |
10 | 9 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))) |
11 | 6, 10 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))) |
12 | 6, 11 | raleqbidv 3327 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))) |
13 | 7, 12 | anbi12d 630 |
. . . 4
⊢ (𝑔 = 𝐺 → ((𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦))) ↔ (𝑓:ran 𝐺⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦))))) |
14 | 13 | abbidv 2808 |
. . 3
⊢ (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}) |
15 | | rneq 5834 |
. . . . . . 7
⊢ (ℎ = 𝐻 → ran ℎ = ran 𝐻) |
16 | 15 | feq3d 6571 |
. . . . . 6
⊢ (ℎ = 𝐻 → (𝑓:ran 𝐺⟶ran ℎ ↔ 𝑓:ran 𝐺⟶ran 𝐻)) |
17 | | oveq 7261 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → ((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = ((𝑓‘𝑥)𝐻(𝑓‘𝑦))) |
18 | 17 | eqeq1d 2740 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))) |
19 | 18 | 2ralbidv 3122 |
. . . . . 6
⊢ (ℎ = 𝐻 → (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))) |
20 | 16, 19 | anbi12d 630 |
. . . . 5
⊢ (ℎ = 𝐻 → ((𝑓:ran 𝐺⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦))))) |
21 | 20 | abbidv 2808 |
. . . 4
⊢ (ℎ = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}) |
22 | 21, 3 | eqtr4di 2797 |
. . 3
⊢ (ℎ = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = 𝑆) |
23 | | df-ghomOLD 35969 |
. . 3
⊢ GrpOpHom
= (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) |
24 | 14, 22, 23 | ovmpog 7410 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝑆 ∈ V) → (𝐺 GrpOpHom 𝐻) = 𝑆) |
25 | 5, 24 | mpd3an3 1460 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆) |