Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem1OLD Structured version   Visualization version   GIF version

Theorem elghomlem1OLD 37865
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 37867. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
Assertion
Ref Expression
elghomlem1OLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐺   𝑓,𝐻,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)

Proof of Theorem elghomlem1OLD
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnexg 7835 . . 3 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
2 rnexg 7835 . . 3 (𝐻 ∈ GrpOp → ran 𝐻 ∈ V)
3 elghomlem1OLD.1 . . . 4 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
43fabexg 7871 . . 3 ((ran 𝐺 ∈ V ∧ ran 𝐻 ∈ V) → 𝑆 ∈ V)
51, 2, 4syl2an 596 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → 𝑆 ∈ V)
6 rneq 5878 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
76feq2d 6636 . . . . 5 (𝑔 = 𝐺 → (𝑓:ran 𝑔⟶ran 𝑓:ran 𝐺⟶ran ))
8 oveq 7355 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
98fveq2d 6826 . . . . . . . 8 (𝑔 = 𝐺 → (𝑓‘(𝑥𝑔𝑦)) = (𝑓‘(𝑥𝐺𝑦)))
109eqeq2d 2740 . . . . . . 7 (𝑔 = 𝐺 → (((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
116, 10raleqbidv 3309 . . . . . 6 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
126, 11raleqbidv 3309 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
137, 12anbi12d 632 . . . 4 (𝑔 = 𝐺 → ((𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦))) ↔ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))))
1413abbidv 2795 . . 3 (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))})
15 rneq 5878 . . . . . . 7 ( = 𝐻 → ran = ran 𝐻)
1615feq3d 6637 . . . . . 6 ( = 𝐻 → (𝑓:ran 𝐺⟶ran 𝑓:ran 𝐺⟶ran 𝐻))
17 oveq 7355 . . . . . . . 8 ( = 𝐻 → ((𝑓𝑥)(𝑓𝑦)) = ((𝑓𝑥)𝐻(𝑓𝑦)))
1817eqeq1d 2731 . . . . . . 7 ( = 𝐻 → (((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
19182ralbidv 3193 . . . . . 6 ( = 𝐻 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
2016, 19anbi12d 632 . . . . 5 ( = 𝐻 → ((𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))))
2120abbidv 2795 . . . 4 ( = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))})
2221, 3eqtr4di 2782 . . 3 ( = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = 𝑆)
23 df-ghomOLD 37864 . . 3 GrpOpHom = (𝑔 ∈ GrpOp, ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))})
2414, 22, 23ovmpog 7508 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝑆 ∈ V) → (𝐺 GrpOpHom 𝐻) = 𝑆)
255, 24mpd3an3 1464 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3436  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  GrpOpcgr 30433   GrpOpHom cghomOLD 37863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-ghomOLD 37864
This theorem is referenced by:  elghomlem2OLD  37866
  Copyright terms: Public domain W3C validator