MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicer Structured version   Visualization version   GIF version

Theorem gicer 19317
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
gicer 𝑔 Er Grp

Proof of Theorem gicer
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 19300 . . . 4 𝑔 = ( GrpIso “ (V ∖ 1o))
2 cnvimass 6111 . . . . 5 ( GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso
3 gimfn 19301 . . . . . 6 GrpIso Fn (Grp × Grp)
43fndmi 6683 . . . . 5 dom GrpIso = (Grp × Grp)
52, 4sseqtri 4045 . . . 4 ( GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp)
61, 5eqsstri 4043 . . 3 𝑔 ⊆ (Grp × Grp)
7 relxp 5718 . . 3 Rel (Grp × Grp)
8 relss 5805 . . 3 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
96, 7, 8mp2 9 . 2 Rel ≃𝑔
10 gicsym 19315 . 2 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
11 gictr 19316 . 2 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
12 gicref 19312 . . 3 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
13 giclcl 19313 . . 3 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1412, 13impbii 209 . 2 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
159, 10, 11, 14iseri 8790 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  cdif 3973  wss 3976   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  cima 5703  Rel wrel 5705  1oc1o 8515   Er wer 8760  Grpcgrp 18973   GrpIso cgim 19297  𝑔 cgic 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-er 8763  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-ghm 19253  df-gim 19299  df-gic 19300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator