![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version |
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
gicer | ⊢ ≃𝑔 Er Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic 19181 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | |
2 | cnvimass 6080 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso | |
3 | gimfn 19182 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
4 | 3 | fndmi 6653 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
5 | 2, 4 | sseqtri 4018 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp) |
6 | 1, 5 | eqsstri 4016 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
7 | relxp 5694 | . . 3 ⊢ Rel (Grp × Grp) | |
8 | relss 5781 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
10 | gicsym 19196 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
11 | gictr 19197 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
12 | gicref 19193 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
13 | giclcl 19194 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
14 | 12, 13 | impbii 208 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
15 | 9, 10, 11, 14 | iseri 8736 | 1 ⊢ ≃𝑔 Er Grp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 × cxp 5674 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Rel wrel 5681 1oc1o 8465 Er wer 8706 Grpcgrp 18861 GrpIso cgim 19178 ≃𝑔 cgic 19179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-1o 8472 df-er 8709 df-map 8828 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-ghm 19135 df-gim 19180 df-gic 19181 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |