MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicer Structured version   Visualization version   GIF version

Theorem gicer 19191
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
gicer 𝑔 Er Grp

Proof of Theorem gicer
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 19174 . . . 4 𝑔 = ( GrpIso “ (V ∖ 1o))
2 cnvimass 6035 . . . . 5 ( GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso
3 gimfn 19175 . . . . . 6 GrpIso Fn (Grp × Grp)
43fndmi 6590 . . . . 5 dom GrpIso = (Grp × Grp)
52, 4sseqtri 3979 . . . 4 ( GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp)
61, 5eqsstri 3977 . . 3 𝑔 ⊆ (Grp × Grp)
7 relxp 5637 . . 3 Rel (Grp × Grp)
8 relss 5726 . . 3 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
96, 7, 8mp2 9 . 2 Rel ≃𝑔
10 gicsym 19189 . 2 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
11 gictr 19190 . 2 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
12 gicref 19186 . . 3 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
13 giclcl 19187 . . 3 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1412, 13impbii 209 . 2 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
159, 10, 11, 14iseri 8655 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  cdif 3895  wss 3898   class class class wbr 5093   × cxp 5617  ccnv 5618  dom cdm 5619  cima 5622  Rel wrel 5624  1oc1o 8384   Er wer 8625  Grpcgrp 18848   GrpIso cgim 19171  𝑔 cgic 19172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-er 8628  df-map 8758  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-ghm 19127  df-gim 19173  df-gic 19174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator