![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version |
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
gicer | ⊢ ≃𝑔 Er Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic 19291 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | |
2 | cnvimass 6102 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso | |
3 | gimfn 19292 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
4 | 3 | fndmi 6673 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
5 | 2, 4 | sseqtri 4032 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp) |
6 | 1, 5 | eqsstri 4030 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
7 | relxp 5707 | . . 3 ⊢ Rel (Grp × Grp) | |
8 | relss 5794 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
10 | gicsym 19306 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
11 | gictr 19307 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
12 | gicref 19303 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
13 | giclcl 19304 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
15 | 9, 10, 11, 14 | iseri 8771 | 1 ⊢ ≃𝑔 Er Grp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 class class class wbr 5148 × cxp 5687 ◡ccnv 5688 dom cdm 5689 “ cima 5692 Rel wrel 5694 1oc1o 8498 Er wer 8741 Grpcgrp 18964 GrpIso cgim 19288 ≃𝑔 cgic 19289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-1o 8505 df-er 8744 df-map 8867 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-ghm 19244 df-gim 19290 df-gic 19291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |