| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| gicer | ⊢ ≃𝑔 Er Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gic 19199 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | |
| 2 | cnvimass 6056 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso | |
| 3 | gimfn 19200 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
| 4 | 3 | fndmi 6625 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
| 5 | 2, 4 | sseqtri 3998 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp) |
| 6 | 1, 5 | eqsstri 3996 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
| 7 | relxp 5659 | . . 3 ⊢ Rel (Grp × Grp) | |
| 8 | relss 5747 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
| 10 | gicsym 19214 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
| 11 | gictr 19215 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
| 12 | gicref 19211 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
| 13 | giclcl 19212 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8701 | 1 ⊢ ≃𝑔 Er Grp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Rel wrel 5646 1oc1o 8430 Er wer 8671 Grpcgrp 18872 GrpIso cgim 19196 ≃𝑔 cgic 19197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-er 8674 df-map 8804 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-ghm 19152 df-gim 19198 df-gic 19199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |