| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| gicer | ⊢ ≃𝑔 Er Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gic 19192 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | |
| 2 | cnvimass 6053 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso | |
| 3 | gimfn 19193 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
| 4 | 3 | fndmi 6622 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
| 5 | 2, 4 | sseqtri 3995 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp) |
| 6 | 1, 5 | eqsstri 3993 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
| 7 | relxp 5656 | . . 3 ⊢ Rel (Grp × Grp) | |
| 8 | relss 5744 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
| 10 | gicsym 19207 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
| 11 | gictr 19208 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
| 12 | gicref 19204 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
| 13 | giclcl 19205 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8698 | 1 ⊢ ≃𝑔 Er Grp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Rel wrel 5643 1oc1o 8427 Er wer 8668 Grpcgrp 18865 GrpIso cgim 19189 ≃𝑔 cgic 19190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-er 8671 df-map 8801 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-ghm 19145 df-gim 19191 df-gic 19192 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |