MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicer Structured version   Visualization version   GIF version

Theorem gicer 19174
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
gicer 𝑔 Er Grp

Proof of Theorem gicer
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 19157 . . . 4 𝑔 = ( GrpIso “ (V ∖ 1o))
2 cnvimass 6037 . . . . 5 ( GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso
3 gimfn 19158 . . . . . 6 GrpIso Fn (Grp × Grp)
43fndmi 6590 . . . . 5 dom GrpIso = (Grp × Grp)
52, 4sseqtri 3986 . . . 4 ( GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp)
61, 5eqsstri 3984 . . 3 𝑔 ⊆ (Grp × Grp)
7 relxp 5641 . . 3 Rel (Grp × Grp)
8 relss 5729 . . 3 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
96, 7, 8mp2 9 . 2 Rel ≃𝑔
10 gicsym 19172 . 2 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
11 gictr 19173 . 2 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
12 gicref 19169 . . 3 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
13 giclcl 19170 . . 3 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1412, 13impbii 209 . 2 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
159, 10, 11, 14iseri 8659 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  cdif 3902  wss 3905   class class class wbr 5095   × cxp 5621  ccnv 5622  dom cdm 5623  cima 5626  Rel wrel 5628  1oc1o 8388   Er wer 8629  Grpcgrp 18830   GrpIso cgim 19154  𝑔 cgic 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-er 8632  df-map 8762  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-ghm 19110  df-gim 19156  df-gic 19157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator