| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version | ||
| Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
| Ref | Expression |
|---|---|
| gicer | ⊢ ≃𝑔 Er Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gic 19248 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | |
| 2 | cnvimass 6074 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso | |
| 3 | gimfn 19249 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
| 4 | 3 | fndmi 6647 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
| 5 | 2, 4 | sseqtri 4012 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp) |
| 6 | 1, 5 | eqsstri 4010 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
| 7 | relxp 5677 | . . 3 ⊢ Rel (Grp × Grp) | |
| 8 | relss 5765 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
| 10 | gicsym 19263 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
| 11 | gictr 19264 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
| 12 | gicref 19260 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
| 13 | giclcl 19261 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8751 | 1 ⊢ ≃𝑔 Er Grp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 class class class wbr 5124 × cxp 5657 ◡ccnv 5658 dom cdm 5659 “ cima 5662 Rel wrel 5664 1oc1o 8478 Er wer 8721 Grpcgrp 18921 GrpIso cgim 19245 ≃𝑔 cgic 19246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-1o 8485 df-er 8724 df-map 8847 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-ghm 19201 df-gim 19247 df-gic 19248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |