![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version |
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
gicer | ⊢ ≃𝑔 Er Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic 18015 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1𝑜)) | |
2 | cnvimass 5702 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1𝑜)) ⊆ dom GrpIso | |
3 | gimfn 18016 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
4 | fndm 6201 | . . . . . 6 ⊢ ( GrpIso Fn (Grp × Grp) → dom GrpIso = (Grp × Grp)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
6 | 2, 5 | sseqtri 3833 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1𝑜)) ⊆ (Grp × Grp) |
7 | 1, 6 | eqsstri 3831 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
8 | relxp 5330 | . . 3 ⊢ Rel (Grp × Grp) | |
9 | relss 5411 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
10 | 7, 8, 9 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
11 | gicsym 18029 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
12 | gictr 18030 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
13 | gicref 18026 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
14 | giclcl 18027 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
15 | 13, 14 | impbii 201 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
16 | 10, 11, 12, 15 | iseri 8009 | 1 ⊢ ≃𝑔 Er Grp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 class class class wbr 4843 × cxp 5310 ◡ccnv 5311 dom cdm 5312 “ cima 5315 Rel wrel 5317 Fn wfn 6096 1𝑜c1o 7792 Er wer 7979 Grpcgrp 17738 GrpIso cgim 18012 ≃𝑔 cgic 18013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-1o 7799 df-er 7982 df-map 8097 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-grp 17741 df-ghm 17971 df-gim 18014 df-gic 18015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |