MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicer Structured version   Visualization version   GIF version

Theorem gicer 19198
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
gicer 𝑔 Er Grp

Proof of Theorem gicer
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 19181 . . . 4 𝑔 = ( GrpIso “ (V ∖ 1o))
2 cnvimass 6080 . . . . 5 ( GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso
3 gimfn 19182 . . . . . 6 GrpIso Fn (Grp × Grp)
43fndmi 6653 . . . . 5 dom GrpIso = (Grp × Grp)
52, 4sseqtri 4018 . . . 4 ( GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp)
61, 5eqsstri 4016 . . 3 𝑔 ⊆ (Grp × Grp)
7 relxp 5694 . . 3 Rel (Grp × Grp)
8 relss 5781 . . 3 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
96, 7, 8mp2 9 . 2 Rel ≃𝑔
10 gicsym 19196 . 2 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
11 gictr 19197 . 2 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
12 gicref 19193 . . 3 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
13 giclcl 19194 . . 3 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1412, 13impbii 208 . 2 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
159, 10, 11, 14iseri 8736 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3473  cdif 3945  wss 3948   class class class wbr 5148   × cxp 5674  ccnv 5675  dom cdm 5676  cima 5679  Rel wrel 5681  1oc1o 8465   Er wer 8706  Grpcgrp 18861   GrpIso cgim 19178  𝑔 cgic 19179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-1o 8472  df-er 8709  df-map 8828  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-grp 18864  df-ghm 19135  df-gim 19180  df-gic 19181
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator