MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicer Structured version   Visualization version   GIF version

Theorem gicer 19187
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.)
Assertion
Ref Expression
gicer 𝑔 Er Grp

Proof of Theorem gicer
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 19170 . . . 4 𝑔 = ( GrpIso “ (V ∖ 1o))
2 cnvimass 6031 . . . . 5 ( GrpIso “ (V ∖ 1o)) ⊆ dom GrpIso
3 gimfn 19171 . . . . . 6 GrpIso Fn (Grp × Grp)
43fndmi 6585 . . . . 5 dom GrpIso = (Grp × Grp)
52, 4sseqtri 3983 . . . 4 ( GrpIso “ (V ∖ 1o)) ⊆ (Grp × Grp)
61, 5eqsstri 3981 . . 3 𝑔 ⊆ (Grp × Grp)
7 relxp 5634 . . 3 Rel (Grp × Grp)
8 relss 5722 . . 3 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
96, 7, 8mp2 9 . 2 Rel ≃𝑔
10 gicsym 19185 . 2 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
11 gictr 19186 . 2 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
12 gicref 19182 . . 3 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
13 giclcl 19183 . . 3 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1412, 13impbii 209 . 2 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
159, 10, 11, 14iseri 8649 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cdif 3899  wss 3902   class class class wbr 5091   × cxp 5614  ccnv 5615  dom cdm 5616  cima 5619  Rel wrel 5621  1oc1o 8378   Er wer 8619  Grpcgrp 18843   GrpIso cgim 19167  𝑔 cgic 19168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-1o 8385  df-er 8622  df-map 8752  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-grp 18846  df-ghm 19123  df-gim 19169  df-gic 19170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator