MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brgic Structured version   Visualization version   GIF version

Theorem brgic 19184
Description: The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
brgic (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)

Proof of Theorem brgic
StepHypRef Expression
1 df-gic 19174 . 2 𝑔 = ( GrpIso “ (V ∖ 1o))
2 gimfn 19175 . 2 GrpIso Fn (Grp × Grp)
31, 2brwitnlem 8448 1 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2925  c0 4292   class class class wbr 5102   × cxp 5629  (class class class)co 7369  Grpcgrp 18847   GrpIso cgim 19171  𝑔 cgic 19172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-gim 19173  df-gic 19174
This theorem is referenced by:  brgici  19185  giclcl  19187  gicrcl  19188  gicsym  19189  gictr  19190  gicen  19192  gicsubgen  19193  giccyg  19814  gicabl  43081
  Copyright terms: Public domain W3C validator