Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brgic | Structured version Visualization version GIF version |
Description: The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
brgic | ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic 18791 | . 2 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | |
2 | gimfn 18792 | . 2 ⊢ GrpIso Fn (Grp × Grp) | |
3 | 1, 2 | brwitnlem 8299 | 1 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ≠ wne 2942 ∅c0 4253 class class class wbr 5070 × cxp 5578 (class class class)co 7255 Grpcgrp 18492 GrpIso cgim 18788 ≃𝑔 cgic 18789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-1o 8267 df-gim 18790 df-gic 18791 |
This theorem is referenced by: brgici 18801 giclcl 18803 gicrcl 18804 gicsym 18805 gictr 18806 gicen 18808 gicsubgen 18809 giccyg 19416 gicabl 40840 |
Copyright terms: Public domain | W3C validator |